[1]王国征,吴远彬,郭坤元,等.CD34CD38KG1a白血病干细胞对同种异体自然杀伤细胞的抵抗作用及其机制[J].新乡医学院学报,2019,36(9):828-832.[doi:10.7683/xxyxyxb.2019.09.006]
 WANG Guo-zheng,WU Yuan-bin,GUO Kun-yuan,et al.Resistance of CD34CD38KG1a leukemic stem cells to allogeneic nature killer cells and its mechanism[J].Journal of Xinxiang Medical University,2019,36(9):828-832.[doi:10.7683/xxyxyxb.2019.09.006]
点击复制

CD34+CD38-KG1a白血病干细胞对同种异体自然杀伤细胞的抵抗作用及其机制
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
36
期数:
2019年9
页码:
828-832
栏目:
基础研究
出版日期:
2019-09-05

文章信息/Info

Title:
Resistance of CD34+CD38-KG1a leukemic stem cells to allogeneic nature killer cells and its mechanism
作者:
王国征吴远彬郭坤元代喜平
(广州中医药大学第二附属医院血液科,广东省中医院血液科,广东 广州 510120)
Author(s):
WANG Guo-zhengWU Yuan-binGUO Kun-yuanDAI Xi-ping
(Department of Hematology,the Second Affiliated Hospital of Guangzhou University of Chinese Medicine;Guangdong Provincial Hospital of Chinese Medicine,Guangzhou 510120,Guangdong Province,China)
关键词:
CD34+CD38-KG1a细胞自然杀伤细胞细胞毒实验NKG2D配体
Keywords:
CD34+CD38-KG1a cellnature killer cellcytotoxicityNK2D ligand
分类号:
R733.71
DOI:
10.7683/xxyxyxb.2019.09.006
文献标志码:
A
摘要:
目的 探讨CD34+CD38-KG1a白血病干细胞抵抗同种异体自然杀伤(NK)细胞杀伤作用的机制。方法 采用免疫磁珠法(MACS)分选CD34+CD38-KG1a细胞和4例健康个体外周血中NK细胞,并采用流式细胞术检测纯度;乳酸脱氢酶(LDH)释放法检测NK细胞在不同效靶比(5∶1,10∶1,20∶1)下对K562和CD34+CD38-KG1a细胞的杀伤作用;聚合酶链式反应-序列特异性引物法分析NK细胞KIR和CD34+CD38- KG1a细胞HLA-Ⅰ基因分型;流式细胞术检测K562和CD34+CD38-KG1a细胞表面主要组织相容性复合体(MHC)-I类链相关分子A/B、人巨细胞病毒 UL16结合蛋白(ULBP)1~3和人类白细胞抗原(HLA)-Ⅰ类分子的表达。结果 分选的CD34+CD38--KG1a细胞和NK细胞纯度分别为(94.25±2.16)%、(91.70±2.05)%。NK细胞在各效靶比下对CD34+CD38-KG1a细胞的杀伤率均低于K562细胞(P<0.05)。4例健康个体NK细胞KIR基因型为KIR2DL1、KIR2DL3、KIR3DL1和KIR3DL2,CD34+CD38-KG1a细胞HLA-Ⅰ基因型为A30、30,B51、78,Cw4、16。K562细胞高表达NKG2D配体,CD34+CD38-KG1a细胞几乎不表达NKG2D配体,CD34+CD38-KG1a细胞中NKG2D配体表达率显著低于K562细胞(P<0.05);K562细胞中几乎不表达HLA-Ⅰ,CD34+CD38-KG1a细胞高表达HLA-Ⅰ,CD34+CD38-KG1a细胞中HLA-Ⅰ的表达率显著高于K562细胞(P<0.05)。结论 CD34+CD38-KG1a细胞明显抵抗同种异体NK细胞的杀伤作用,其机制可能与高表达HLA-Ⅰ分子和低表达NK2D配体有关。
Abstract:
Objective To explore the mechanism of CD34+CD38-KG1a leukemia stem cells against killing effect of nature killer (NK)cells.Methods The CD34+CD38-KG1a cells and NK cells of 4 healthy individuals were isolated by magnetic cell sorting (MACS) and the purity were detected by flow cytometry.The killing effects of NK cells on K562 and CD34+CD38-KG1a cells at different effector-to-target cell ratios(5∶1,10∶1,20∶1) were detected by lactate dehydrogenase (LDH) release assay.KIR genotyping of NK cells and HLA-I genotyping of CD34+CD38-KG1a cells were analyzed by polymerase chain reaction-sequence specific primers.The expression of major histocompatibility complex(MHC) class I chain-related molecules A and B(MICA/B),human cytomegalovirus glycoprotein UL16 binding proteins(ULBP)1-3 and human leukocyte antigen(HLA)-I molecules on the surface of K562 and CD34+CD38-KG1a cells were detected by flow cytometry.Results The purity of CD34+CD38-KG1a cells and NK cells were (94.25+2.16)% and (91.70+2.05)% respectively.The killing rate of NK cells to CD34+CD38- KG1a cells was lower than that to the K562 cells under all effector-to-target cell ratios (P<0.05).The KIR genotypes of NK cells in 4 healthy individuals were KIR2DL1,KIR2DL3,KIR3DL1 and KIR3DL2;the HLA-I genotypes of CD34+CD38-KG1a cells were A30,30;B51,78;Cw4,16.NKG2D ligand was highly expressed in K562 cells,and NKG2D ligand was almost not expressed in CD34+CD38-KG1a cells;the expression rate of NKG2D ligand in CD34+CD38-KG1a cells was significantly lower than that in the K562 cells (P<0.05).The HLA-I was almost not expressed in K562 cells,but it was highly expressed in CD34+CD38-KG1a cells;the expression rate of HLA-I in CD34+CD38-KG1a cells was significantly higher than that in the K562 cells(P<0.05).Conclusion CD34+CD38-KG1a cells can significantly resistant the killing of allogeneic NK cells,which may be related to the high expression of HLA-I and the low expression of NK2D ligands.

参考文献/References:

[1] HO T C,LAMERE M,STEVENS B M,et al.Evolution of acute myelogenous leukemia stem cell properties after treatment and progression[J].Blood,2016,128(13):1671-1678.
[2] 王丽,刘文君.白血病干细胞蛋白质组学研究进展[J].实用儿科临床杂志,2011,26(3):208-211.
[3] ZHANG Z,ZHAO L,WEI X,et al.Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML[J].Oncol Lett,2018,16(4):5147-5159.
[4] 王国征,李慧,吴远彬,等.免疫磁珠分选白血病KG1a细胞中CD34+CD38-干细胞及其特性研究[J].新乡医学院学报,2013,30(3):181-184.
[5] IWASAKI H.Leukemia stem cell[J].Gan To Kagaku Ryoho,2014,41(3):280-284.
[6] GROSSENBACHER S K,AGUILAR E G,MURPHY W J.Leveraging natural killer cells for cancer immunotherapy[J].Immunotherapy,2017,9(6):487-497.
[7] RAULET D H,GASSER S,GOWEN B G,et al.Regulation of ligands for the NKG2D activating receptor[J].Annu Rev Immunol,2013,(31):413-441.
[8] SLEIMAN M,BRONS N H,KAOMA T,et al.NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules[J].J Immunol,2014,192(6):2602-2610.
[9] SAUNDERS P M,VIVIAN J P,O′CONNOR G M,et al.A bird′s eye view of NK cell receptor interactions with their MHC class I ligands[J].Immunol Rev,2015,267(1):148-166.
[10] CARLOMAGNO S,FALCO M,BONO M,et al.KIR3DS1-mediated recognition of HLA-*B51:modulation of KIR3DS1 responsiveness by self HLA-B sllotypes and effect on NK cell licensing[J].Front Immunol,2017,8:581.
[11] HILPERT J,GROSSE-HOVEST L,GRüNEBACH F,et al.Com-prehensive analysis of NKG2D ligand expression and release in leukemia:implications for NKG2D-mediated NK cell responses[J].J Immunol,2012,189(3):1360-1371.
[12] KWON H J,KIM N,KIM H S.Molecular checkpoints controlling natural killer cell activation and their modulation for cancerimmunotherapy[J].Exp Mol Med,2017,49(3):e311.

相似文献/References:

[1]张林波,牛玉娜,王 辉.信号转导与转录激活因子和肿瘤微环境对自然杀伤细胞功能及免疫监视影响的研究进展[J].新乡医学院学报,2017,34(11):1037.[doi:10.7683/xxyxyxb.2017.11.021]

更新日期/Last Update: 2019-09-05