[1]孙宣锋,曹慧霞,焦晓静,等.糖原合成激酶-3β通过上皮间充质转化参与糖尿病肾病发生发展的研究进展[J].新乡医学院学报,2024,(1):077-81.[doi:10.7683/xxyxyxb.2024.01.014]
 SUN Xuanfeng,CAO Huixia,JIAO Xiaojing,et al.Research progress of glycogen synthesis kinase-3β in the development of diabetic nephropathy[J].Journal of Xinxiang Medical University,2024,(1):077-81.[doi:10.7683/xxyxyxb.2024.01.014]
点击复制

糖原合成激酶-3β通过上皮间充质转化参与糖尿病肾病发生发展的研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
期数:
2024年1
页码:
077-81
栏目:
综述
出版日期:
2024-01-05

文章信息/Info

Title:
Research progress of glycogen synthesis kinase-3β in the development of diabetic nephropathy
作者:
孙宣锋曹慧霞焦晓静张丽娜阎磊邵凤民
(郑州大学人民医院肾内科/河南省肾脏病免疫重点实验室,河南 郑州 450003)
Author(s):
SUN XuanfengCAO HuixiaJIAO XiaojingZHANG LinaYAN LeiSHAO Fengmin
(Department of Nephrology,People′s Hospital of Zhengzhou University,Henan Key Laboratory of Renal Immunization,Zhengzhou 450003,Henan Province,China)
关键词:
糖原合成激酶-3β糖尿病肾病上皮间充质转化信号通路
Keywords:
glycogen synthesis kinase-3βdiabetic nephropathyepithelial-mesenchymal transitionsignaling pathways
分类号:
R692
DOI:
10.7683/xxyxyxb.2024.01.014
文献标志码:
A
摘要:
糖尿病肾病(DN)是糖尿病重要的并发症之一,发病机制复杂,目前尚未完全阐明。上皮间充质转化(EMT)在DN的发生发展中发挥重要作用。糖原合成激酶-3β(GSK-3β)通过多个信号转导通路参与EMT过程,影响DN的发生进展。本文就GSK-3β参与DN中EMT的相关机制研究进展进行综述。
Abstract:
Diabetic nephropathy (DN) is one of the most important complications of diabetes.Its pathogenesis is complex and has not been fully elucidated.Epithelial-mesenchymal transition (EMT) plays an important role in the development of DN.Relevant data show that glycogen synthesis kinase-3β (GSK-3β) participates in the process of EMT through multiple signaling pathways and affects the occurrence and progression of DN.This article reviews the research progress of GSK-3β involved in EMT in DN.

参考文献/References:

[1] ALICIC R Z,ROONEY M T,TUTTLE K R.Diabetic kidney disease:challenges,progress,and possibilities[J].Clin J Am Soc Nephrol,2017,12(12):2032-2045.
[2] RATHMANN W,KOSTEV K.Association of glucose-lowering drugs with incident stroke and transient ischemic attacks in primary care patients with type 2 diabetes:disease analyzer database[J].Acta Diabetol,2022,59(11):1443-1451.
[3] SUN H,SAEEDI P,KARURANGA S,et al.IDF diabetes atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J].Diabetes Res Clin Pract,2022,183:109119.
[4] 陈碧霞,张利,吴玲玲,等.糖尿病肾病内皮细胞损伤机制的研究进[J].解放军医学杂志,2020,45(8):876-883.
CHEN B X,ZHANG L,WU L L,et al.Research progress on the mechanism of endothelial cells injury in diabetic nephropathy[J].Med J Chin PLA,2020,45(8):876-883.
[5] YU J,ZONG G N,WU H,et al.Podoplanin mediates the renoprotective effect of berberine on diabetic kidney disease in mice[J].Acta Pharmacol Sin,2019,40(12):1544-1554.
[6] CAO Y,CHEN Z,HU J,et al.Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J].Front Cell Dev Biol,2021,9:769213.
[7] ZHOU Y X,SHI L X,YANG H,et al.Effects of a GSK-3β inhibitor on the renal expression levels of RANK,RANKL and NF-κB in a rat model of diabetic nephropathy[J].Exp Ther Med,2016,11(6):2495-2502.
[8] VAINIO L,TAPONEN S,KINNUNEN S M,et al.GSK3β serine 389 phosphorylation modulates cardiomyocyte hypertrophy and ischemic injury[J].Int J Mol Sci,2021,22(24):13586.
[9] LIN J,SONG T,LI C,et al.GSK-3β in DNA repair,apoptosis,and resistance of chemotherapy,radiotherapy of cancer[J].Biochim Biophys Acta Mol Cell Res,2020,1867(5):118659.
[10] LIANG X,WANG P,CHEN B,et al.Glycogen synthase kinase 3β hyperactivity in urinary exfoliated cells predicts progression of diabetic kidney disease[J].Kidney Int,2020,97(1):175-192.
[11] SONG S,KIM J,PARK K,et al.GSK-3β activation is required for ZIP-induced disruption of learned fear[J].Sci Rep,2020,10(1):18227.
[12] JIN N,WU Y,XU W,et al.C-terminal truncation of GSK-3β enhances its dephosphorylation by PP2A[J].FEBS Lett,2017,591(7):1053-1063.
[13] HE R,DU S,LEI T,et al.Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (review)[J].Oncol Rep,2020,44(6):2373-2385.
[14] HUANG F,WANG Q,GUO F,et al.FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease[J].EBioMedicine,2019,48:491-504.
[15] SHIN J H,KIM K M,JEONG J U,et al.Nrf2-Heme oxygenase-1 attenuates high-glucose-induced epithelial-to-mesenchymal transition of renal tubule cells by inhibiting ROS-mediated PI3K/Akt/GSK-3β signaling[J].J Diabetes Res,2019,2019:2510105.
[16] LI Y,HU Q,LI C,et al.PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease[J].J Clin Invest,2019,129(3):1129-1151.
[17] SINGH M,YELLE N,VRNUGOPAL C,et al.EMT:mechanisms and therapeutic implications[J].Pharmacol Ther,2018,182:80-94.
[18] DAI H,LIU Q,LIU B.Research progress on mechanism of podocyte depletion in diabetic nephropathy[J].J Diabetes Res,2017,2017:2615286.
[19] WAN J,LI P,LIU D W,et al.GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice,and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes[J].Mol Med Rep,2016,14(2):1771-1784.
[20] TAO M,ZHENG D,LIANG X,et al.Tripterygium glycoside suppresses epithelialtomesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway[J].Mol Med Rep,2021,24(2):592.
[21] TU Q,LI Y,JIN J,et al.Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells[J].Pharm Biol,2019,57(1):778-786.
[22] LIU H,TAKAGAKI Y,KUMAGAI A,et al.The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation[J].J Diabetes Investig,2021,12(5):697-709.
[23] YING Q,WU G.Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases:an update[J].Ren Fail,2017,39(1):474-483.
[24] GU Y Y,DOU J Y,HUANG X R,et al.Transforming growth factor-β and long non-coding rna in renal inflammation and fibrosis[J].Front Physiol,2021,12:684236.
[25] SISTO M,RIBATTI D,LISI S.Organ fibrosis and autoimmunity:the role of inflammation in TGF β-dependent EMT[J].Biomolecules,2021,11(2):310.
[26] 陆顺,时照明.BMP-7/Smads信号通路在糖尿病肾病纤维化中作用的研究进展[J].中华全科医学,2013,11(2):282-283.
LU S,SHI Z M.Progress of BMP-7/Smads signaling pathway in fibrosis of diabetic nephropathy[J].Chin J Gen Pract,2013,11(2):282-283.
[27] SCHIFFER M,SCHFFER L E,GUPTA A,et al.Inhibitory Smads and TGF-beta signaling in glomerular cells[J].J Am Soc Nephrol,2002,13(11):2657-2666.
[28] LUO K.Signaling cross talk between TGF-β/Smad and other signaling pathways[J].Cold Spring Harb Perspect Biol,2017,9(1):a022137.
[29] CHEN B,WANG P,LIANG X,et al.Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease[J].Cell Death Dis,2021,12(5):432.
[30] 赵凯,陈姗,龚如军,等.GSK3β促进TGF-β1诱导的肾小管上皮HK-2细胞纤维化[J].第三军医大学学报,2012,34(19):1921-1924.
ZHAO K,CHEN S,GONG R J,et al.GSK3β promotes TGF-β1-induced renal tubular epithelial HK-2 cell fibrosis[J].J Third Milit Med Univ,2012,34(19):1921-1924.
[31] PIERA-VELAZQUEZ S,LI Z,JIMENEZ S A.Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders[J].Am J Pathol,2011,179(3):1074-1080.
[32] KANLAYA R,PEERAPEN P,NILNUMKHUM A,et al.Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways[J].J Nutr Biochem,2020,76:108266.
[33] LI Z H,GUO X Y,QUAN X Y,et al.The role of parietal epithelial cells in the pathogenesis of podocytopathy[J].Front Physiol,2022,13:832772.
[34] ABOU AZER F,LIM G E.Metabolic contributions of wnt signaling:more than controlling flight[J].Front Cell Dev Biol,2021,9:709823.
[35] 潘飞,杨丽君,张立建,等.XAV939对H446细胞增殖及Wnt信号通路相关基因的影响[J].青岛大学学报(医学版),2018,54(6):710-713.
PAN F,YANG L J,ZHANG L J,et al.Effects of XAV939 on H446 cell proliferation and Wnt signaling pathway-related genes[J].J Qingdao Univ (Med Sci),2018,54(6):710-713.
[36] LIU L,SUN Q,DAVIS F,et al.Epithelial-mesenchymal transition in organ fibrosis development:current understanding and treatment strategies[J].Burns Trauma,2022,10:tkac011.
[37] CHANG B,CHEN W,ZHANG Y,et al.Tripterygium wilfordii mitigates hyperglycemia-induced upregulated Wnt/β-catenin expre-ssion and kidney injury in diabetic rats[J].Exp Ther Med,2018,15(4):3874-3882.
[38] LEE Y J,HAN H J.Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt,GSK-3β,Snail1,and β-catenin in renal proximal tubule cells[J].Am J Physiol Renal Physiol,2010,298(5):F1263-1275.
[39] SINGH S P,TAO S,FIELDS T A,et al.Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice[J].Dis Model Mech,2015,8(8):931-940.
[40] DI GREGORIO J,ROBUFFO I,SPALLETTA S,et al.The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders[J].Front Cell Dev Biol,2020,8:607483.
[41] FENG Y,LE F,TIAN P,et al.GTW inhibits the epithelial to mesenchymal transition of epithelial ovarian cancer via ILK/AKT/GSK3β/Slug signalling pathway[J].J Cancer,2021,12(5):1386-1397.
[42] LI H,WANG Y,ZHOU Z,et al.Combination of leflunomide and benazepril reduces renal injury of diabetic nephropathy rats and inhibits high-glucose induced cell apoptosis through regulation of NF-κB,TGF-β and TRPC6[J].Ren Fail,2019,41(1):899-906.
[43] 白志勋,陆静,杨亦彬.TGF-β1/ILK/FSP1信号通路在环孢素诱导肾小管上皮细胞转分化中的作用[J].南方医科大学学报,2019,39(7):804-809.
BAI Z X,LU J,YANG Y B.The role of TGF-β1/ILK/FSP1 signaling pathway in the transdifferentiation of renal tubular epithelial cells induced by cyclosporine[J].J Southern Med Univ,2019,39(7):804-809.
[44] SU J,MORGANI S M,DAVID C J,et al.TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J].Nature,2020,577(7791):566-571.
[45] GENG X Q,MA A,HE J Z,et al.Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways[J].Acta Pharmacol Sin,2020,41(5):670-677.
[46] 孙晨思,李海琦,刘波.生物标志物在糖尿病肾病早期诊断中的应用研究进展[J].新乡医学院学报,2022,39(2):197-200.
SUN C S,LI H Q,LIU B.Research progress of biomarkers in early diagnosis of diabetic nephropathy[J].J Xinxiang Med Univ,2022,39(2):197-200.
[47] LIU M,HUANG X,TIAN Y,et al.Phosphorylated GSK3β protects stressinduced apoptosis of myoblasts via the PI3K/Akt signaling pathway[J].Mol Med Rep,2020,22(1):317-327.
[48] RAI U,KOSURU R,PRAKASH S,et al.Tetramethylpyrazine alleviates diabetic nephropathy through the activation of Akt signalling pathway in rats[J].Eur J Pharmacol,2019,865:172763.

相似文献/References:

[1]袁慧娟 翁孝刚 窦敬芳 郭永年.芎嗪对实验性糖尿病大鼠肾脏的保护作用[J].新乡医学院学报,1999,16(04):331.
[2]乔立新,张兴国,熊芬霞,等.益气活血胶囊的制备及其治疗Ⅱ型糖尿病的疗效[J].新乡医学院学报,2001,18(06):404.
[3]翁孝刚. 赵誉洲,陈三敏,越志勇. 郭永年.川芎嗪、山茛菪碱、蝮蛇抗栓酶及卡托普利对糖尿病大鼠肾脏的保护作用[J].新乡医学院学报,2001,18(01):020.
[4]杨福燕,魏崇一,王凤业,等.阿魏酸钠对糖尿病肾病患者血浆内皮素的影响[J].新乡医学院学报,2003,20(03):199.
[5]杨福燕,魏崇一,王凤业,等.阿魏酸钠对糖尿病肾病患者血浆内皮素的影响[J].新乡医学院学报,2003,20(03):199.
[6]王晓青,李 竞,王鹏虎.氯沙坦联合苯那普利对早期糖尿病肾病患者血清TGF2β1 及MCP21的影响[J].新乡医学院学报,2006,23(05):517.
[7]游然,张同帅.奥扎格雷钠治疗糖尿病肾病疗效观察 TitleFilter('chTitle');[J].新乡医学院学报,2010,27(04):382.
[8]谭静.糖尿病肾病患者血清C 反应蛋白、肿瘤坏死因子-α 和血管内皮生长因子水平变化[J].新乡医学院学报,2012,29(09):678.
[9]崔艳,赵晓露,师晶晶,等.梅花鹿鹿茸总蛋白对糖尿病肾病大鼠肾损伤的治疗作用及分子机制[J].新乡医学院学报,2023,40(1):011.[doi:10.7683/xxyxyxb.2023.01.002]
 CUI Yan,ZHAO Xiaolu,SHI Jingjing,et al.Therapeutic effect and molecular mechanism of Sika deer velvet antler protein on renal injury of rats with diabetes nephropathy[J].Journal of Xinxiang Medical University,2023,40(1):011.[doi:10.7683/xxyxyxb.2023.01.002]
[10]阎婷婷,赵英政,易宪文,等.氧化应激及炎症对糖尿病肾病的影响[J].新乡医学院学报,2019,36(8):701.[doi:10.7683/xxyxyxb.2019.08.001]

更新日期/Last Update: 2024-01-05