[1]郭兴,胡明慧,孙亚男,等.脂质在帕金森病发生中的作用及机制研究进展[J].新乡医学院学报,2024,(4):392-396.[doi:10.7683/xxyxyxb.2024.04.018]
 GUO Xing,HU Minghui,SUN Yanan,et al.Research progress on the role and mechanism of lipids in the occurrence of Parkinson′s disease[J].Journal of Xinxiang Medical University,2024,(4):392-396.[doi:10.7683/xxyxyxb.2024.04.018]
点击复制

脂质在帕金森病发生中的作用及机制研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
期数:
2024年4
页码:
392-396
栏目:
综述
出版日期:
2024-04-05

文章信息/Info

Title:
Research progress on the role and mechanism of lipids in the occurrence of Parkinson′s disease
作者:
郭兴12胡明慧2孙亚男2崔振武2邢红霞3张伟2;单琳琳12李超堃2
(1.新乡医学院第二附属医院,河南省生物精神病学重点实验室,河南 新乡 453002;2.新乡医学院基础医学院,河南 新乡 453003;3.新乡医学院第三附属医院神经内科,河南 新乡 453003)
Author(s):
GUO Xing12HU Minghui2SUN Yanan2CUI Zhenwu2XING Hongxia3ZHANG Wei2SHAN Linlin12LI Chaokun2
(1.Henan Key Laboratory of Biological Psychiatry,the Second Affiliated Hospital of Xinxiang Medical University,Xinxiang 453002,Henan Province,China;2.School of Basic Medical Sciences,Xinxiang Medical University,Xinxiang 453003,Henan Province,China;3.Department of Neurology,the Third Affiliated Hospital of Xinxiang Medical University,Xinxiang 453003,Henan Province,China)
关键词:
脂质帕金森病α-突触核蛋白
Keywords:
lipidsParkinson′s diseasealpha-synuclein
分类号:
R742.5
DOI:
10.7683/xxyxyxb.2024.04.018
文献标志码:
A
摘要:
帕金森病(PD)是一种蛋白质构象疾病。生理状态的α-突触核蛋白 (ASN)为无序单体,病理状态的ASN为聚合状态。 ASN沿神经轴的病理性传播与PD的临床表现密切相关。病理性ASN可引起氧化应激,而神经炎症和相邻细胞中的蛋白质改变可加剧ASN的神经毒性,导致神经变性和神经元死亡。ASN可吸引并结合带负电荷的脂质,是脂质代谢调节、多巴胺产生和炎症反应中的关键介质,参与PD 的发生发展。脂肪酸、甘油酯、磷脂等脂质异常代谢与ASN聚集密切相关,因此,脂质异常代谢在PD发生发展中发挥重要作用。本文主要综述脂质在PD发生发展中的作用及机制研究进展,以期为PD防治措施研究提供参考。
Abstract:
Parkinson′s disease (PD) is a protein conformational disease.Alpha-synuclein (ASN) in the physiological state is a disordered monomer,and ASN in the pathological state is in an aggregated state.The pathological spread of ASN along the neuraxis is closely related to the clinical manifestations of PD.Pathogenic forms of ASN evoke oxidative stress,while neuroinflammation and protein alterations in neighboring cells intensify ASN toxicity,and result in neurodegeneration and neuronal death.Studies have also shown ASN is a key player in lipid metabolism regulation,dopamine production,and infla-mmatory responses by the binding and attraction to negatively charged lipids,and participates in the occurrence and development of PD.Abnormal lipid metabolism such as fatty acids,glycerides,and phospholipids is closely related to ASN aggregation.Therefore,abnormal lipid metabolism plays an important role in the occurrence and development of PD.This article mainly reviews the research progress on the role and mechanism of lipids in the occurrence and development of PD,to provide references for research on PD prevention and treatment measures.

参考文献/References:

[1] BLOEM B R,OKUN M S,KLEIN C.Parkinson′s disease[J].Lancet,2021,397(10291):2284-2303.
[2] WEINTRAUB D,AARSLAND D,CHAUDHURI K R,et al.The neuropsychiatry of Parkinson′s disease:advances and challenges[J].Lancet Neurol,2022,21(1):89-102.
[3] GALPER J,DEAN N J,PICKFORD R,et al.Lipid pathway dysfunction is prevalent in patients with Parkinson′s disease[J].Brain,2022,145(10):3472-3487.
[4] KUROUSKI D.Elucidating the role of lipids in the aggregation of amyloidogenic proteins[J].Acc Chem Res,2023,56(21):2898-2906.
[5] GARCA-SANZ P,M F G AERTS J,MORATALLA R.The role of cholesterol in α-synuclein and lewy body pathology in GBA1 Parkinson′s disease[J].Mov Disord,2021,36(5):1070-1085.
[6] SHAO Y,LI T,LIU Z,et al.Comprehensive metabolic profiling of Parkinson′s disease by liquid chromatography-mass spectrometry[J].Mol Neurodegener,2021〖KG-\*3〗,16(1):4.
[7] AHO V T E,HOUSER M C,PEREIRA P A B,et al.Relationships of gut microbiota,short-chain fatty acids,inflammation,and the gut barrier in Parkinson′s disease[J].Mol Neurodegener,2021,16(1):6.
[8] CHEN S J,CHEN C C,LIAO H Y,et al.Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J].Neurology,2022,98(8):e848-e858.
[9] SHIN C,LIM Y,LIM H,et al.Plasma short-chain fatty acids in patients with Parkinson′s disease[J].Mov Disord,2020,35(6):1021-1027.
[10] YOO D,LIM Y,SON Y,et al.Dietary intake and plasma levels of polyunsaturated fatty acids in early-stage Parkinson′s disease[J].Sci Rep,2021,11(1):12489.
[11] HERNANDO S,REQUEJO C,HERRAN E,et al.Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson′s disease:the role of glia and NRf2 regulation[J].Neurobiol Dis,2019,121:252-262.
[12] XICOY H,KLEMANN C J,WITTE W D,et al.Shared genetic etiology between Parkinson′s disease and blood levels of specific lipids[J].NPJ Parkinsons Dis,2021,7(1):23.
[13] FU X,WANG Y,HE X,et al.A systematic review and meta-ana-lysis of serum cholesterol and triglyceride levels in patients with Parkinson′s disease[J].Lipids Health Dis,2020,19(1):97.
[14] SINCLAIR E,TRIVEDI D K,SARKAR D,et al.Metabolomics of sebum reveals lipid dysregulation in Parkinson′s disease[J].Nat Commun,2021,12(1):1592.
[15] SNCHEZ CAMPOS S,ALZA N P,SALVADOR G A.Lipid metabolism alterations in the neuronal response to A53T α-synuclein and Fe-induced injury[J].Arch Biochem Biophys,2018,655:43-54.
[16] GUERREIRO P S,COELHO J E,SOUSA-LIMA I,et al.Mutant A53T α-synuclein improves rotarod performance before motor deficits and affects metabolic pathways[J].Neuromolecular Med,2017,19(1):113-121.
[17] TANDON P.Receptor-mediated release of inositolphosphates in brain slices[J].Methods Mol Med,1999,22:177-190.
[18] WOOD P L,TIPPIREDDY S,FERIANTE J,et al.Augmented frontal cortex diacylglycerol levels in Parkinson′s disease and Lewy body disease[J].PLoS One,2018,13(3):e0191815.
[19] BARBER C N,RABEN D M.Roles of DGKs in neurons:postsynaptic functions?[J].Adv Biol Regul,2020,75:100688.
[20] PANKRATZ N,WILK J B,LATOURELLE J C,et al.Genomewide association study for susceptibility genes contributing to familial Parkinson disease[J].Hum Genet,2009,124(6):593-605.
[21] POSOR Y,JANG W,HAUCKE V.Phosphoinositides as membrane organizers[J].Nat Rev Mol Cell Biol,2022,23(12):797-816.
[22] WANG B,TONTONOZ P.Phospholipid remodeling in physiology and disease[J].Annu Rev Physiol,2019,81:165-188.
[23] KANO K,AOKI J,HLA T.Lysophospholipid mediators in health and disease[J].Annu Rev Pathol,2022,17:459-483.
[24] HAMMOND G R V,BURKE J E.Novel roles of phosphoinositides in signaling,lipid transport,and disease[J].Curr Opin Cell Biol,2020,63:57-67.
[25] SIMONS K,TOOMRE D.Lipid rafts and signal transduction[J].Nat Rev Mol Cell Biol,2000,1(1):31-39.
[26] LPEZ DE FRUTOS L,ALMEIDA F,MURILLO-SAICH J,et al.Serum phospholipid profile changes in gaucher disease and Parkinson′s disease[J].Int J Mol Sci,2022,23(18):10387.
[27] REDDAN J M,WHITE D J,MACPHERSON H,et al.Glycerophospholipid supplementation as a potential intervention for supporting cerebral structure in older adults[J].Front Aging Neurosci,2018,10:49.
[28] THEODOROPOULOU S,GIALOURIS A G.Lipids and mental disorders:Evidence,uncertainties and perspectives[J].Psychiatriki,2019,30(2):129-141.
[29] FAROOQUI A A,HORROCKS L A.Excitotoxicity and neurological disorders:involvement of membrane phospholipids[J].Int Rev Neurobiol,1994,36:267-323.
[30] CHENG D,JENNER A M,SHUI G,et al.Lipid pathway alterations in Parkinson′s disease primary visual cortex[J].PLoS One,2011,6(2):e17299.
[31] LOBASSO S,TANZARELLA P,VERGARA D,et al.Lipid profiling of parkin-mutant human skin fibroblasts[J].J Cell Physiol,2017,232(12):3540-3551.
[32] WANG S,ZHANG S,LIOU L C,et al.Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease[J].Proc Natl Acad Sci U S A,2014,111(38):E3976-E3985.
[33] MU J,LAM S M,SHUI G.Emerging roles and therapeutic potentials of sphingolipids in pathophysiology:emphasis on fatty acyl heterogeneity[J].J Genet Genomics,2024,51(3):268-278.
[34] HANNUN Y A,OBEID L M.Sphingolipids and their metabolism in physiology and disease[J].Nat Rev Mol Cell Biol,2018,19(3):175-191.
[35] QUINVILLE B M,DESCHENES N M,RYCKMAN A E,et al.A comprehensive review:sphingolipid metabolism and implications of disruption in sphingolipid homeostasis[J].Int J Mol Sci,2021,22(11):5793.
[36] WANG L,LIN G,ZUO Z,et al.Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia[J].Sci Adv,2022,8(28):eabn3326.
[37] PPIN ,JALINIER T,LEMIEUX G L,et al.Sphingosine-1-phosphate receptors modulators decrease signs of neuroinflammation and prevent Parkinson′s disease symptoms in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model[J].Front Pharmacol,2020,11:77.
[38] SIVASUBRAMANIAN M,KANAGARAJ N,DHEEN S T,et al.Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson′s disease and in MPP+-treated MN9D cells in vitro[J].Neuroscience,2015,290:636-648.
[39] PYSZKO J,STROSZNAJDER J B.Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells[J].Mol Neurobiol,2014,50(1):38-48.
[40] ABBOTT S K,LI H,MU〖KG-\*3〗N〖DD(-\*3〗~OZ S S,et al.Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson′s disease[J].Mov Disord,2014,29(4):518-526.
[41] MIELKE M M,MAETZLER W,HAUGHEY N J,et al.Plasma ceramide and glucosylceramide metabolism is altered in sporadic Parkinson′s disease and associated with cognitive impairment:a pilot study[J].PLoS One,2013,8(9):e73094.
[42] YOON J,LEE C Y,V SCHAPIRA A H.Biochemical consequences of glucocerebrosidase 1 mutations in Parkinson′s disease[J].Neural Regen Res,2024,19(4):725-727.
[43] GALPER J,KIM W S,DZAMKO N.LRRK2 and lipid pathways:implications for Parkinson′s disease[J].Biomolecules,2022,12(11):1597.
[44] HU L,DONG M X,HUANG Y L,et al.Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson′s disease[J].Front Mol Neurosci,2020,13:80.
[45] HU G,ANTIKAINEN R,JOUSILAHTI P,et al.Total cholesterol and the risk of Parkinson disease[J].Neurology,2008,70(21):1972-1979.
[46] ASCHERIO A,SCHWARZSCHILD M A.The epidemiology of Parkinson′s disease:risk factors and prevention[J].Lancet Neurol,2016,15(12):1257-1272.
[47] YAN M,XIONG M,DAI L,et al.Cofilin 1 promotes the pathogenicity and transmission of pathological α-synuclein in mouse models of Parkinson′s disease[J].NPJ Parkinsons Dis,2022,8(1):1.
[48] CHEN R,GU X,WANG X.α-Synuclein in Parkinson′s disease and advances in detection[J].Clin Chim Acta,2022,529:76-86.
[49] SINGLETON A B,FARRER M,JOHNSON J,et al.Alpha-Synuclein locus triplication causes Parkinson′s disease[J].Science,2003,302(5646):841.
[50] BURR J,SHARMA M,SDHOF T C.Definition of a molecular pathway mediating α-synuclein neurotoxicity[J].J Neurosci,2015,35(13):5221-5232.
[51] BERNAL-CONDE L D,RAMOS-ACEVEDO R,REYES-HERNNDEZ M A,et al.Alpha-synuclein physiology and pathology:a perspective on cellular structures and organelles[J].Front Neurosci,2019,13:1399.
[52] BUSSELL R JR,ELIEZER D.A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins[J].J Mol Biol,2003,329(4):763-778.
[53] GALVAGNION C.The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson′s disease[J].J Parkinsons Dis,2017,7(3):433-450.
[54] ADIBHATLA R M,HATCHER J F.Phospholipase a(2),reactive oxygen species,and lipid peroxidation in CNS pathologies[J].BMB Rep,2008,41(8):560-567.
[55] PUSPITA L,CHUNG S Y,SHIM J W.Oxidative stress and cellular pathologies in Parkinson′s disease[J].Mol Brain,2017,10(1):53.
[56] DING X S,GAO L,HAN Z,et al.Ferroptosis in Parkinson′s disease:molecular mechanisms and therapeutic potential[J].Ageing Res Rev,2023,91:102077.
[57] ANGELOVA P R,ESTERAS N,ABRAMOV A Y.Mitochondria and lipid peroxidation in the mechanism of neurodegeneration:finding ways for prevention[J].Med Res Rev,2021,41(2):770-784.

相似文献/References:

[1]马琪林,鲁丛霞,蔡琰,等.帕金森病患者血小板线粒体谷氨酸载体和复合物活性研究 [J].新乡医学院学报,2007,24(02):114.
[2]洪丽,李珂,闫晓海,等.瞬目反射与肛门括约肌肌电图对帕金森病患者病情分期判定的意义[J].新乡医学院学报,2012,29(12):936.
[3]朱丰霞,常海敏,段 瑛,等.人参皂苷 Rg1对帕金森病小鼠黑质中酪氨酸羟化酶及ephrinB2和磷酸化 c-Jun表达的影响[J].新乡医学院学报,2014,31(10):781.[doi:10.7683/xxyxyxb.2014.10.003]
[4]魏家彬,杨 帆,王淑秀.人参皂苷Rg1对1甲基4苯基1,2,3,6四氢吡啶诱导的帕金森病小鼠黑质酪氨酸蛋白激酶A4表达的影响[J].新乡医学院学报,2015,32(05):404.
[5]李 乐,黄志勇,贺文麟.血浆同型半胱氨酸、催乳素水平与帕金森病及帕金森病痴呆相关性分析[J].新乡医学院学报,2015,32(05):438.
[6]宋金辉,王普清,丁旭东,等.节律性视觉刺激对帕金森病患者运动功能及平衡能力的影响[J].新乡医学院学报,2014,31(12):1006.[doi:10.7683/xxyxyxb.2014.12.011]
[7]孙 冰,徐玉英.氧化苦参碱对帕金森小鼠中枢神经系统氧化应激的影响[J].新乡医学院学报,2020,37(6):509.[doi:10.7683/xxyxyxb.2020.06.002]
 SUN Bing,XU Yuying.Effects of oxymatrine on oxidative stress of central nervous system in Parkinson mice[J].Journal of Xinxiang Medical University,2020,37(4):509.[doi:10.7683/xxyxyxb.2020.06.002]
[8]张静怡,邓永宁,张 萌,等.Sirt3基因过表达慢病毒载体的构建及其在人神经母细胞瘤SH-SY5Y细胞中的表达[J].新乡医学院学报,2021,38(1):006.[doi:10.7683/xxyxyxb.2021.01.002]
 ZHANG Jingyi,DENG Yongning,ZHANG Meng,et al.Construction of lentiviral vector with Sirt3 gene overexpression and its expression in human neuroblastoma SH-SY5Y cells[J].Journal of Xinxiang Medical University,2021,38(4):006.[doi:10.7683/xxyxyxb.2021.01.002]
[9]汤丹丹,张 勋,符益纲,等.磁共振波谱在原发性帕金森病治疗效果评估中的应用价值[J].新乡医学院学报,2021,38(8):734.[doi:10.7683/xxyxyxb.2021.08.007]
 TANG Dandan,ZHANG Xun,FU Yigang,et al.Value of magnetic resonance spectroscopy in evaluating the therapeutic effect of primary Parkinson′s disease[J].Journal of Xinxiang Medical University,2021,38(4):734.[doi:10.7683/xxyxyxb.2021.08.007]
[10]赵雪薇,陈珮琪,牛延翔,等.帕金森病的病因及发病机制研究进展[J].新乡医学院学报,2021,38(4):378.[doi:10.7683/xxyxyxb.2021.04.018]

更新日期/Last Update: 2024-04-05