[1]侯雅新,林 飞,李奕帛,等.氧化应激在动脉粥样硬化发病中的作用研究进展[J].新乡医学院学报,2021,38(11):1090-1094.[doi:10.7683/xxyxyxb.2021.11.018]
点击复制

氧化应激在动脉粥样硬化发病中的作用研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
38
期数:
2021年11
页码:
1090-1094
栏目:
综述
出版日期:
2021-11-05

文章信息/Info

作者:
侯雅新12林 飞12李奕帛12关 硕12孟卫正12赵国安123
(1.新乡医学院第一附属医院心脏中心,河南 卫辉 4531002.河南省心血管损伤与修复国际联合实验室,河南 卫辉 453100;3.河南省心脏线粒体生物医学工程研究中心,河南 卫辉 453100)
关键词:
动脉粥样硬化氧化应激平滑肌细胞内皮细胞巨噬细胞
分类号:
R544.11
DOI:
10.7683/xxyxyxb.2021.11.018
文献标志码:
A
摘要:
动脉粥样硬化(AS)是心脑血管疾病的主要致病因素。氧化应激可通过刺激体内线粒体功能紊乱和烟酰胺腺嘌呤二核苷酸磷酸氧化酶生成,引起体内活性氧生成过多,造成内皮细胞(EC)功能受损、血管平滑肌细胞(VSMC)增殖迁移、巨噬细胞泡沫化和炎症反应,从而加速AS的发生发展。本文从氧化应激对EC、VSMC以及巨噬细胞的影响等方面综述氧化应激在AS发病中的作用,为冠状动脉粥样硬化的临床治疗提供依据。

参考文献/References:

[1] BENJAMIN E J,VIRANI S S,CALLAWAY C W,et al.Heart disease and stroke statistics-2018 update:a report from the American heart association[J].Circulation,2018,137(12):e67-e492.
[2] WANG S,CHENG Z,CHEN X.Promotion of PTEN on apoptosis through PI3K/Akt signal in vascular smooth muscle cells of mice model of coronary heart disease[J].J Cell Biochem,2019,120 (9):14636-14644.
[3] CANUGOVI C,STENVENSON M D,VENDROV A E,et al.Increased mitochondrial NADPH oxidase 4 (Nox4) expression in aging is a causative factor in aortic stiffening[J].Redox Biol,2019,26:101288.
[4] 郭晓坤,王林.炎症因素与动脉粥样硬化病变发病机制关系的研究进展[J].医学综述,2020,26(16):3160-3166.
[5] 骆莹莹,姚树桐,王大新,等.氧化应激在动脉粥样硬化发生发展中作用的研究新进展[J].中国介入心脏病学杂志,2013,27 (1):46-50.
[6] GALLO G,PIERELLI G,FORTE M,et al.Role of oxidative stress in the process of vascular remodeling following coronary revasculari-zation[J].Int J Cardiol,2018,268:27-33.
[7] POZNYAK A V,GRECHKO A V,OREKHOVA V A,et al.NADPH oxidases and their role in atherosclerosis[J].Biomedicines,2020,8 (7):206-219.
[8] 曹静,刘昭娅,胥茜,等.NADPH氧化酶家族在心血管疾病中作用的研究进展[J].中南大学学报(医学版),2019,44(11):1258-1267.
[9] SHEMIAKOVA T,IVANOVA E,GRECHKO A V,et al.Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis[J].Biomedicines,2020,8(6):166-172.
[10] FATIMA S,AL-MOHAIMEED N,AL-SHAIKH Y,et al.Combined treatment of epigallocatechin gallate and coenzyme Q10 attenuates cisplatin-induced nephrotoxicity via suppression of oxidative/nitrosative stress,inflammation and cellular damage[J].Food Chem Toxicol,2016,94:213-220.
[11] XIE T,WANG C,JIN Y,et al.CoenzymeQ10-induced activation of AMPK-YAP-OPA1 pathway alleviates atherosclerosis by improving mitochondrial function,inhibiting oxidative stress and promoting energy metabolism[J].Front Pharmacol,2020,11:1034-1049.
[12] HU H,LIN Y,XU X,et al.The alterations of mitochondrial DNA in coronary heart disease[J].Exp Mol Pathol,2020,114:104412.
[13] JING Y J,NI J W,DING F H,et al.p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/- mice[J].Kidney Int,2016,89(2):439- 449.
[14] SUKUMAR P,VISWAMBHARAN H,IMRIE H,et al.Nox2 NADPH oxidase has a critical role in insulin resistance-related endothelial cell dysfunction[J].Diabetes,2013,62(6):2130-2134.
[15] REN X,REN L,WEI Q,et al.Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells[J].Cardiovasc Diabetol,2017,16(1):52-64.
[16] KOULIS C,WATSON A,GRAY S,et al.Linking RAGE and Nox in diabetic micro- and macrovascular complications[J].Diabetes Metab,2015,41(4):272-281.
[17] 李苗,王丽丽,常冰梅.血管内皮细胞功能损伤机制的研究进展[J].中国动脉硬化杂志,2019,27(8):730-736.
[18] LIN Y T,CHEN L K,JIAN D Y,et al.Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-PI3K-Akt signaling and subsequent ROS production and IKK/NF-κB activation[J].Cell Physiol Biochem,2019,52(6):1398-1411.
[19] DING H,JIANG Y,JIANG Y,et al.Ulinastatin attenuates monocyte-endothelial adhesion via inhibiting ROS transfer between the neighboring vascular endothelial cells mediated by Cx43[J].Am J Transl Res,2020,12(8):4326-4336.
[20] 瞿凯,邱菊辉,王贵学.血管内皮细胞屏障功能的血流动力学调控及其与动脉粥样硬化的关系[J].中国动脉硬化杂志,2020,28(1):1-6.
[21] YANG M,LV H,LIU Q,et al.Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway[J].Oxid Med Cell Longev,2020,2020:9173530.
[22] ZHANG Y,MURUGESAN P,HUANG K,et al.NADPH oxidases and oxidase crosstalk in cardiovascular diseases:novel therapeutic targets[J].Nat Rev Cardiol,2020,17(3):170-194.
[23] TSUBOI T,MAEDA M,HAYASHI T.Administration of L-arginine plus L-citrulline or L-citrulline alone successfully retarded endothelial senescence[J].PLoS One,2018,13(2):e0192252.
[24] DUBOIS-DERUY E,PEUGNET V,TURKIEH A,et al.Oxidative stress in cardiovascular diseases[J].Antioxidants(Basel),2020,9(9):864.
[25] MAEDA M,TSUBOI T,HAYAAHI T,et al.An inhibitor of activated blood coagulation factor X shows anti-endothelial senescence and anti-atherosclerotic effects[J].J Vasc Res,2019,56(4):181-190.
[26] YIN J,XIA W,WU M,et al.Inhibition of mitochondrial complex I activity attenuates neointimal hyperplasia by inhibiting smooth muscle cell proliferation and migration[J].Chem Biol Interact,2019,304:73-82.
[27] QUAN Y,XIN Y,TIAN G,et al.Mitochondrial ROS-modulated mtDNA:a potential target for cardiac aging[J].Oxid Med Cell Longev,2020,2020:9423593.
[28] HAHN A,ZURYN S.Mitochondrial genome(mtDNA) mutations that generate reactive oxygen species[J].Antioxidants(Basel),2019,8(9):392.
[29] TSAI I,PAN Z C,CHENG H P,et al.Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence[J].J Mol Cell Cardiol,2016,98:18-27.
[30] FUKAI T,USHIO-FUKAI M.Cross-talk between NADPH oxidase and mitochondria:role in ROS signaling and angiogenesis[J].Cells,2020,9(8):1849.
[31] PAREDES F,WILLIAMS H C,QUINTANA R A,et al.Mitochondrial protein poldip2(polymerase delta interacting protein 2) controls vascular smooth muscle differentiated phenotype by O-linked GlcNAc(N-acetylglucosamine) transferase-dependent inhibition of a ubiquitin proteasome system[J].Circ Res,2020,126(1):41-56.
[32] DATLA S,MCGRAIL D L,VUKELIC S,et al.Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization[J].Am J Physiol Heart Circ Physiol,2014,307(7):H945-H957.
[33] YEH C C,WU J Y,LEE G L,et al.Vanadium derivative exposure promotes functional alterations of VSMCs and consequent atherosclerosis via ROS/p38/NF-κB-mediated IL-6 production[J].Int J Mol Sci,2019,20(24):6115.
[34] ZHANG J,CAI W,FAN Z,et al.MicroRNA-24 inhibits the oxidative stress induced by vascular injury by activating the Nrf2/Ho-1 signaling pathway[J].Atherosclerosis,2019,290:9-18.
[35] ZHOU J,ZHANG L,ZHENG B,et al.Salvia miltiorrhiza bunge exerts anti-oxidative effects through inhibiting KLF10 expression in vascular smooth muscle cells exposed to high glucose[J].J Ethnopharmacol,2020,262:113208.
[36] 倪钧.氧化应激相关酶介导心血管疾病中血管内膜增生的机制[J].国际心血管病杂志,2016,43(6):362-364.
[37] BARTON M,MEYER M R,PROSSNITZ E R.Nox1 downregulators:a new class of therapeutics[J].Steroids,2019,152:108494.
[38] MANEA A,MANEA S A,GAN A M,et al.Human monocytes and macrophages express NADPH oxidase 5a potential source of reactive oxygen species in atherosclerosis[J].Biochem Biophys Res Commun,2015,461(1):172-179.
[39] 孟利民,杨华,信栓力,等.重组人B型利钠肽抑制氧化低密度脂蛋白诱导的巨噬细胞氧化应激及炎症反应[J].中国心血管杂志,2018,23(6):490-494.
[40] KATTOOR A J,GOEL A,MEHTA J L,et al.LOX-1:regulation,signaling and its role in atherosclerosis[J].Antioxidants(Basel),2019,8(7):218.
[41] ZHANG H,LIU Q,LIN J L,et al.Recombinant human thioredoxin-1 protects macrophages from oxidized low-density lipoprotein-induced foam cell formation and cell apoptosis[J].Biomol Ther(Seoul),2018,26(2):121-129.
[42] WANG Y,JI N,GONG X,et al.Thioredoxin-1 attenuates atherosclerosis development through inhibiting NLRP3 inflammasome[J].Endocrine,2020,70(1):65-70.
[43] HAO S,JI J,ZHAO H,et al.Mitochondrion-targeted peptide SS-31 inhibited oxidized low-density lipoproteins-induced foam cell formation through both ROS scavenging and inhibition of cholesterol influx in RAW264.7 cells[J].Molecules,2015,20(12):21287-21297.

相似文献/References:

[1]张 敏,李雪琴,马增凤.血清脂质水平测定在肾脏疾病中的意义[J].新乡医学院学报,2000,17(05):346.
[2]张 敏,李雪琴,马增凤.血清脂质水平测定在肾脏疾病中的意义[J].新乡医学院学报,2000,17(05):346.
[3]周延升,李聪辉,李平法,等.维生素对大鼠脂质及脂质过氧化作用的影响[J].新乡医学院学报,2002,19(02):081.
[4]王淑秀,赵长安,许春雷,等.同型半胱氨酸对内皮细胞单核细胞趋化蛋白一1表达的影响[J].新乡医学院学报,2003,20(02):086.
[5]王淑秀,赵长安,许春雷,等.同型半胱氨酸对内皮细胞单核细胞趋化蛋白O1 表达的影响[J].新乡医学院学报,2003,20(02):086.
[6]王淑秀,赵长安,和瑞芝.同型半胱氨酸诱导内皮细胞表达白细胞介素8[J].新乡医学院学报,2003,20(03):158.
[7]李西兴,周延升,时 岚,等.血脂和同型半胱氨酸对家兔动脉粥样硬化形成的影响[J].新乡医学院学报,2003,20(01):005.
[8]李西兴,周延升,时.岚,等.血脂和同型半胱氨酸对家兔动脉粥样硬化形成的影响[J].新乡医学院学报,2003,20(01):005.
[9]徐自超,张哲莹,郭晓静,等.核转录因子-κB在动脉粥样硬化大鼠动脉平滑肌细胞中的表达[J].新乡医学院学报,2009,26(03):235.
[10]廖永晖,汤雨,千年松,等.氧化应激与细胞凋亡[J].新乡医学院学报,2011,28(01):110.
[11]吴奇东,章怡祎.沉默信息调节因子2相关酶1抗氧化应激作用在抗动脉粥样硬化中的作用机制研究进展[J].新乡医学院学报,2023,40(9):887.[doi:10.7683/xxyxyxb.2023.09.017]
 WU Qidong,ZHANG Yiyi.Research progress on the mechanism of antioxidant stress induced by silent information regulation 2 homolog 1 in anti-atherosclerosis[J].Journal of Xinxiang Medical University,2023,40(11):887.[doi:10.7683/xxyxyxb.2023.09.017]
[12]朱茉莉,李怡霏,李珍珍,等.维生素B6对动脉粥样硬化小鼠血管内皮损伤的影响及作用机制[J].新乡医学院学报,2024,(1):001.[doi:10.7683/xxyxyxb.2024.01.001]
 ZHU Moli,LI Yifei,LI Zhenzhen,et al.Effect of vitamin B6 on vascular endothelial injury of atherosclerosis mice and its mechanism[J].Journal of Xinxiang Medical University,2024,(11):001.[doi:10.7683/xxyxyxb.2024.01.001]

更新日期/Last Update: 2021-11-05