[1]张子京,陈亚南,王昌铭.糖尿病合并动脉粥样硬化性急性脑梗死患者血清炎性因子研究进展[J].新乡医学院学报,2020,37(2):196-200.[doi:10.7683/xxyxyxb.2020.02.023]
点击复制

糖尿病合并动脉粥样硬化性急性脑梗死患者血清炎性因子研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
37
期数:
2020年2
页码:
196-200
栏目:
综述
出版日期:
2020-02-05

文章信息/Info

作者:
张子京1陈亚南2王昌铭3
(1.新乡医学院研究生处, 河南 新乡 453003; 2.黄河三门峡医院神经内科, 河南 三门峡 472000; 3.中国人民解放军中国联勤保障部队第九八九医院神经内科, 河南 洛阳 471000)
关键词:
糖尿病动脉粥样硬化脑梗死炎性因子
分类号:
R743.33
DOI:
10.7683/xxyxyxb.2020.02.023
文献标志码:
A
摘要:
动脉粥样硬化和2型糖尿病均是一种慢性炎症反应性疾病,炎性因子在动脉粥样硬化性斑块形成和性质演变中起着至关重要的作用,本文总结了近年来2 型糖尿病合并动脉粥样硬化性脑梗死患者血清炎性因子的研究现状及进展。

参考文献/References:

[1] FEIGIN V L,FOROUZANFAR M H,KRISHNAMURTHI R,et al.Global and regional burden of stroke during 1990-2010:findings from the Global Burden of Disease Study 2010[J].Lancet (London,England),2014,383(9913):245-254.
[2] ZHOU H,ZHANG X,LU J.Progress on diabetic cerebrovascular diseases[J].Bosn J Basic Med Sci,2014,14(4):185-190.
[3] PHASHA M N,SOMA P,PRETORIUS E,et al.Coagulopathy in type 2 diabetes mellitus:pathological mechanisms and the role of factor XⅢ-A single nucleotide polymorphisms[J].Curr Diabetes Rev,2019,15(6):446-455.
[4] ROSS S,GERSTEIN H,PARE G.The genetic link retween diabetes and atherosclerosis[J].Can J Cardiol,2018,34(5):565-574.
[5] LUSIS A J.Atherosclerosis[J].Nature,2000,407(6801):233-241.
[6] ROSS R.Atherosclerosis:an inflammatory disease[J].N Engl J Med,1999,340(2):115-126.
[7] JIN P,CONG S.LOX-1 and atherosclerotic-related diseases[J].Clin Chim Acta,2019,491:24-29.
[8] KATAKAMI N.Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus[J].J Atheroscler Thromb,2018,25(1):27-39.
[9] DAVIS F M,GALLAGHER K.Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease[J].Arterioscler Thromb Vasc Biol,2019,39(4):623-634.
[10] PILELY K,BAKKE S S,PALARASAH Y,et al.Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation:a potential new compound for treatment of atherosclerosis[J].Atherosclerosis,2019,283:35-42.
[11] SOEJIMA H,OGAWA H,MORIMOTO T,et al.Aspirin possibly reduces cerebrovascular events in type 2 diabetic patients with higher C-reactive protein level:subanalysis from the JPAD trial[J].J Cardiol,2013,62(3):165-170.
[12] XU S,KAMATO D,LITTLE P J,et al.Targeting epigenetics and non-coding RNAs in atherosclerosis:from mechanisms to therapeutics[J].Pharmacol Ther,2019,196:15-43.
[13] ZABIHI N A,MOUSAVI S M,MAHMOUDABADY M,et al.Improves blood glucose and lipids and ameliorates oxidative stress in heart and aorta of diabetic rats[J].Int J Prev Med,2018,9:110.
[14] YAMAGISHI S I,MATSUI T.Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis[J].Ann Vasc Dis,2018,11(3):253-258.
[15] LANKIN V,KONOWALOVA G,TIKHAZE A,et al.The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal:a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes[J].Mol Cell Biochem,2014,395(1/2):241-252.
[16] TEODORO J S,NUNES S,ROLO A P,et al.Therapeutic options targeting oxidative stress,mitochondrial dysfunction and inflammation to hinder the progression of vascular complications of diabetes [J].Frontiers in physiology,2018,9:1857.
[17] YU E P,BENNETT M R.The role of mitochondrial DNA damage in the development of atherosclerosis[J].Free Radic Biol Med,2016,100:223-230.
[18] BULLON P,NEWMAN H N,BATTINO M.Obesity,diabetes mellitus,atherosclerosis and chronic periodontitis:a shared pathology via oxidative stress and mitochondrial dysfunction[J].Periodontol 2000,2014,64(1):139-153.
[19] ANUPAM K,KAUSHAL J,PRABHAKAR N,et al.Effect of redox status of peripheral blood on immune signature of circulating regulatory and cytotoxic T cells in streptozotocin induced rodent model of type I diabetes[J].Immunobiology,2018,223(10):586-597.
[20] BAYRAMI G,ALIHEMMATI A,KARIMI P,et al.Combination of vildagliptin and ischemic postconditioning in diabetic hearts as a working strategy to reduce myocardial reperfusion injury by restoring mitochondrial function and autophagic activity[J].Adv Pharm Bull,2018,8(2):319-329.
[21] HE C,HART P C,GERMAIN D.SOD2 and the mitochondrial UPR:partners regulating cellular phenotypic transitions[J].Trends Biochem Sci,2016,41(7):568-577.
[22] WANG Q,ZHANG M,TORRES G,et al.Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission[J].Diabetes,2017,66(1):193-205.
[23] FISHMAN S L,SONMEZ H,BASMAN C,et al.The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus:a review[J].Mol Med,2018,24(1):59.
[24] SANTILLI F,D′ARDES D.Oxidative stress in chronic vascular disease:from prediction to prevention [J].Vascul Pharmacol,2015,74:23-37.
[25] BASHAN N,KOVSAN J,KACHKO I,et al.Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species[J].Physiol Rev,2009,89(1):27-71.
[26] LUNDBERG J O,GLADWIN M T,WEITZBERG E.Strategies to increase nitric oxide signalling in cardiovascular disease[J].Nat Rev Drug Discov,2015,14(9):623-641.
[27] PITOCCO D,ZACCARDI F,DI STASIO E,et al.Oxidative stress, nitric oxide,and diabetes[J].Rev Diabet Stud,2010,7(1):15-25.
[28] CAI Z,HE W,ZHUANG F J.The role of high high-sensitivity C-reactive protein levels at admission on poor prognosis after acute ischemic stroke[J].Int J Neurosci,2019,129(5):423-429.
[29] LUAN Y Y,YAO Y M.The clinical significance and potential role of C-reactive protein in chronic inflammatory and neurodegenerative diseases[J].Front Immunol,2018,9:1302.
[30] LIBBY P.Interleukin-1 Beta as a target for atherosclerosis therapy:biological basis of CANTOS and beyond[J].J Am Coll Cardiol,2017,70(18):2278-2289.
[31] RIDKER P M.From C-Reactive protein to interleukin-6 to interleukin-1:moving upstream to identify novel targets for atheroprotection[J].Circ Res,2016,118(1):145-156.
[32] DINARELLO C A.Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J].Blood,2011,117(14):3720-3732.
[33] MOSHAPA F T,RICHES-SUMAN K,PALMER T M.Therapeutic targeting of the proinflammatory IL-6-JAK/STAT signalling pathways responsible for vascular restenosis in type 2 diabetes mellitus[J].Cardiol Res Pract,2019,2019:9846312.
[34] TU L,YANG L.IL-33 at the crossroads of metabolic disorders and immunity[J].Front Endocrinol,2019,10:26.
[35] ALTARA R,GHALI R,MALLAT Z,et al.Conflicting vascular and metabolic impact of the IL-33/sST2 axis[J].Cardiovasc Res,2018,114(12):1578-1594.
[36] SURYAVANSHI S V.NF-κB:a potential target in the management of vascular complications of diabetes[J].Front Pharmacol,2017,8:798.
[37] ELKIND M S,TAI W,COATES K,et al.High-sensitivity C-reactive protein,lipoprotein-associated phospholipase A2,and outcome after ischemic stroke[J].Arch Intern Med,2006,166 (19):2073-2080.
[38] MORETTI R,CARUSO P.The controversial role of homocysteine in neurology:from labs to clinical practice[J].Int J Mol Sci,2019,20(1):E231.
[39] JIALAL I,CHAUDHURI A.Targeting inflammation to reduce ASCVD in type 2 diabetes[J].J Diabetes Complications,2019,33(1):1-3.
[40] OREKHOV A N,GRECHKO A V,ROMANENKO E B,et al.Novel approaches to anti-atherosclerotic therapy:cell-based models and herbal preparations (review of our own data)[J].Curr Drug Discov Technol,2018.DOI:10.2174/157016381666619010111 2241.[Epub ahead of print].
[41] PILELY K,BAKKE S S,PALARASAH Y,et al.Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation:a potential new compound for treatment of atherosclerosis [J].Atherosclerosis,2019,283:35-42.
[42] EILENBERG W,STOJKOVIC S,PIECHOTA-POLANCZYK A,et al.Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment[J].Cardiovasc Diabetol,2017,16(1):98.
[43] FURUHASHI M.Fatty acid-binding protein 4 in cardiovascular and metabolic diseases[J].J Atheroscler Thromb,2019,26(3):216-232.
[44] MARLET I R,OLMESTIG J N E,VILSBOLL T,et al.Neuroprotective mechanisms of glucagon-like peptide-1-based therapies in ischaemic stroke:a systematic review based on pre-clinical studies[J].Basic Clin Pharmacol Toxicol,2018,122(6):559-569.
[45] VINU E A,MARTINEZ-HERVAS S,HERRERO-CERVERA A,et al.Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus[J].Transl Res,2019,203:31-48.
[46] PODZOLKOV V I,POKROVSKAYA A E.Vitamin D deficiency and cardiovascular pathology[J].Ter Arkh,2018,90(9):144-150.

相似文献/References:

[1]马晓军,霍慧春,刘娟,等.针灸联合中药对糖尿病大鼠血脂及血糖的调节作用[J].新乡医学院学报,,():000.
[2]郭永年.糖尿病氯磺丙脲酒精潮红试验[J].新乡医学院学报,1986,3(02):064.
[3]翁孝刚,郭永年,王宪波,等.复方中药渴乐饮对实验大鼠体重及血糖的影响 [J].新乡医学院学报,1994,11(02):107.
[4]郭永年,李灵敏,王伟,等.新光碘蛋的研制及其对糖尿病患者的保健作用 [J].新乡医学院学报,1994,11(04):339.
[5]翁孝刚,王宪波,郭永年,等.复方中药渴乐饮对实验大鼠胰岛B细胞形态及功能的影响[J].新乡医学院学报,1994,11(04):351.
[6]王宪波,翁孝刚,王伟,等.复方中药渴乐饮对实验大鼠的抗氧化抗疲劳作用[J].新乡医学院学报,1994,11(04):354.
[7]翁孝钢,梁荩忠,吴兆锋,等.链脲菌素实验性糖尿病大鼠组织钙调素活性的研究[J].新乡医学院学报,1995,12(03):201.
[8]王宪波,翁孝钢,郭永年,等.复方中药渴乐对实验糖尿病大鼠血脂的影响[J].新乡医学院学报,1995,12(01):018.
[9]王卫民,张清贵,王昕红,等.尿C—肽与Ⅱ型糖尿病患者的β细胞功能[J].新乡医学院学报,1996,13(01):044.
[10]索新华,陈志刚,郭永年,等.糖尿病性水疱病及其感染的临床治疗[J].新乡医学院学报,1997,14(01):057.

更新日期/Last Update: 2020-02-05