[1]夏天光,孔宪斌,王明丽,等.光遗传技术调控新生神经元电活动对颅脑损伤小鼠认知功能的影响[J].新乡医学院学报,2018,35(10):858-864.[doi:10.7683/xxyxyxb.2018.10.004]
 XIA Tian-guang,KONG Xian-bin,WANG Ming-li,et al.Effect of regulating electrical activity of newborn neurons with light genetic technology on cognitive function of mice with traumatic brain injury[J].Journal of Xinxiang Medical University,2018,35(10):858-864.[doi:10.7683/xxyxyxb.2018.10.004]
点击复制

光遗传技术调控新生神经元电活动对颅脑损伤小鼠认知功能的影响
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
35
期数:
2018年10
页码:
858-864
栏目:
基础研究
出版日期:
2018-10-05

文章信息/Info

Title:
Effect of regulating electrical activity of newborn neurons with light genetic technology on cognitive function of mice with traumatic brain injury
作者:
夏天光1孔宪斌1王明丽1毕 莹2吕方方1梁 军3姜 伟3孙 倩3董化江1李晓红1
(1.武警后勤学院附属医院脑创伤与神经疾病研究所,天津 300162;2.武警后勤学院附属医院心脏科,天津 300162;3.天津大学精密仪器与光电子工程学院,天津 300072)
Author(s):
XIA Tian-guang1KONG Xian-bin1WANG Ming-li1BI Ying2LYU Fang-fang1LIANG Jun3JIANG Wei3SUN Qian3DONG Hua-jiang1LI Xiao-hong1
(1.Institute of Brain Trauma and Neurology,the Affiliated Hospital of Logistics University of Chinese People′s Armed Police Forces,Tianjin 300162,China;2.Department of Cardiology,the Affiliated Hospital of Logistics University of Chinese People′s Armed Police Forces,Tianjin 300162,China;3.Precision Instrument and Optoelectronic Engineering Institute of Tianjin University,Tianjin 300072,China)
关键词:
颅脑损伤成体神经再生光遗传去极化认知障碍
Keywords:
traumatic brain injuryadult neurogenesisoptogeneticsdepolarizationcognition deficit
分类号:
R651.1
DOI:
10.7683/xxyxyxb.2018.10.004
文献标志码:
A
摘要:
目的 探讨光调控去极化对颅脑损伤(TBI)小鼠海马齿状回(DG)新生神经元的存活、成熟及认知功能的影响。方法 将66只雄性C57BL/6小鼠随机分为假手术组(n=10)、TBI组(n=12)、TBI+增强型绿色荧光蛋白(EGFP)组(n=12)和TBI+视紫红质通道蛋白-2(ChR2)组(n=32);假手术组小鼠行单纯开颅手术,未行液压冲击;TBI组小鼠给予液压冲击制备TBI模型;TBI+EGFP组小鼠给予液压冲击制备TBI模型后感染慢病毒DCX-EGFP;TBI+ChR2组小鼠给予液压冲击制备TBI模型后感染慢病毒DCX-ChR2-EGFP。各组小鼠均于造模后连续7 d行腹腔内注射BrdU(100 mg·kg-1)。免疫荧光染色检测造模后7、28 d TBI组小鼠海马DG区新生神经元存活和成熟情况;倒置荧光显微镜观察假手术组和造模后不同时间点(3、5、7、9、12、18、28 d)TBI+ChR2组海马DG区DCX-EGFP阳性新生神经元变化;造模后21~26 d进行水迷宫实验检测各组小鼠认知能力;造模后28 d采用免疫荧光染色检测TBI组、TBI+EGFP组和TBI+ChR2组小鼠海马 DG 区表达DCX神经元的存活和成熟情况。结果 造模后28 d,TBI组小鼠海马DG区新生成熟神经元数量显著少于造模后7 d(P<0.01)。造模后3、18、28 d,TBI+ChR2组与假手术组小鼠海马DG区DCX-EGFP阳性新生神经元数量比较差异无统计学意义(P>0.05);造模后5、7、9、12 d,TBI+ChR2组小鼠海马DG区DCX-EGFP阳性新生神经元数量均显著高于假手术组(P<0.05,P<0.01)。造模后9 d,TBI+ChR2组小鼠海马DG区DCX-EGFP阳性新生神经元数量均显著高于其他各时间点(P<0.05,P<0.01)。造模后21 d,4组小鼠寻找隐匿平台的潜伏期比较差异均无统计学意义(P>0.05)。造模后22~26 d,TBI组和TBI+EGFP组小鼠寻找隐匿平台的潜伏期均显著长于假手术组(P<0.01);TBI+ChR2组与假手术组小鼠寻找隐匿平台的潜伏期比较差异无统计学意义(P>0.05);TBI+EGFP组与TBI组小鼠寻找隐匿平台的潜伏期比较差异无统计学意义(P>0.05);TBI+ChR2组小鼠寻找隐匿平台的潜伏期均显著短于TBI组和TBI+EGFP组(P<0.01)。TBI组、TBI+EGFP组小鼠在目标象限停留时间和穿越平台次数均显著低于假手术组(P<0.01);TBI+ChR2组与假手术组小鼠在目标象限停留时间和穿越平台次数比较差异无统计学意义(P>0.05)。TBI+ChR2组小鼠在目标象限停留时间和穿越平台次数均高于TBI组和TBI+EGFP组(P<0.05);TBI+EGFP组与TBI组小鼠在目标象限停留时间和穿越平台次数比较差异无统计学意义(P>0.05)。造模后28 d,TBI+ChR2组小鼠海马DG区新生成熟神经元数量明显高于TBI组和TBI+EGFP组(P<0.01);TBI组与TBI+EGFP组小鼠海马DG区新生成熟神经元数量比较差异无统计学意义(P>0.05)。结论 TBI后光调控表达DCX-EGFP细胞的去极化可增强DG区新生神经元的存活和成熟,并显著改善TBI小鼠的认知功能。
Abstract:
Objective To investigate the effect of optical regulation depolarization on the survival,maturation of neonatal cells in dentate gyrus of hippocampus in mice with traumatic brain injury(TBI) and the cognitive function of mice with TBI.Methods Sixty-six male C57BL/6 mice were randomly divided into sham operation group(n=10),TBI group(n=12),TBI+enhanced green fluorescent protein(EGFP) group(n=12) and TBI+channelrhodopsin-2(ChR2) group(n=32).The mice in sham operation group underwent simple craniotomy without hydraulic shock;the mice in TBI group were given hydraulic shock to prepare TBI model;the mice in TBI+EGFP group were given hydraulic shock to prepare TBI model and then infected with lentivirus DCX-EGFP;the mice in TBI+ChR2 group were given hydraulic shock to prepare TBI model and then infected with lentivirus DCX-ChR2-EGFP.All mice were injected BrdU(100 mg·kg-1) intraperitoneally for 7 days after modeling.The survival and maturation of the neonatal neurons in the DG area of the hippocampus of mice in the TBI group was detected by immunofluorescence staining on the 7th and 28th day after modeling;the changes of DCX-EGFP positive neurons in the DG area of the hippocampus of mice in the sham operation group and the TBI+ChR2 group at different time points(3,5,7,9,12,18,28 days after modeling) were observed by inverted fluorescence microscopy;the cognitive function of mice in each group was detected by Morris water maze test at 21-26 days after modeling;the survival and maturation of cells expressing DCX in DG region of hippocampus in TBI group,TBI+EGFP group and TBI+ChR2 group were detected by immunofluorescence staining at 28 days after modeling.Results The number of neonatal mature neurons in the DG area of the hippocampus in TBI group at 28 days after modeling was significantly less than that at 7 days after modeling(P<0.01).There was no significant difference in the number of DCX-EGFP positive neonatal neurons in the DG area of the hippocampus of mice between TBI+ChR2 group and sham operation group at 3,18,28 days after modeling(P>0.05);the number of DCX-EGFP positive neonatal neurons in the DG area of the hippocampus of mice in the TBI+ChR2 group was significantly higher than that in the sham operation group at 5,7,9,12 days after modeling(P<0.05,P<0.01).The number of DCX-EGFP positive neonatal neurons in the DG area of the hippocampus of mice in TBI+ChR2 group at 9 days after modeling was significantly higher than other time points(P<0.05,P<0.01).There was no significant difference in the latency for searching hidden platform of mice among the four groups at 21 days after modeling(P>0.05).At 22-26 days after modeling,the latency for searching hidden platform of mice in TBI groupand TBI+EGFP group was significantly longer than that in the sham operation group(P<0.01);there was no significant difference in the latency for searching hidden platform of mice between TBI+ChR2 group and sham operation group(P>0.05);there was no significant difference in the latency for searching hidden platform of mice between TBI+EGFP group and TBI group(P>0.05);the latency for searching hidden platform of mice in TBI+ChR2 group was significantly shorter than that in the TBI group and TBI+EGFP group(P<0.01).The target quadrant staying time and the number of crossing platforms of mice in TBI group and TBI+EGFP group were significantly lower than those in the sham operation group(P<0.01);there was no significant difference in the target quadrant staying time and the number of crossing platforms of mice between TBI+ChR2 group and sham operation group(P>0.05);the target quadrant staying time and the number of crossing platforms of mice in TBI+ChR2 group were significantly higher than those in the TBI group and TBI+EGFP group(P<0.05);there was no significant difference in the target quadrant staying time and the number of crossing platforms of mice between TBI+EGFP group and TBI group(P>0.05).At 28 days after modeling,the number of neonatal mature neurons in the DG area of the hippocampus of mice in TBI+ChR2 group was significantly higher than that in the TBI group and TBI+EGFP group(P<0.01);there was no significant difference in the number of neonatal mature neurons in the DG area of the hippocampus of mice between TBI group and TBI+EGFP group(P>0.05).Conclusion Optical regulation depolarization of cells expressing DCX-EGFP can enhance the survival and maturation of newborn neurons in hippocampus dentate gyrus and significantly improve the cognitive deficits of mice after TBI.

参考文献/References:

[1] KOCHANEK P M,CLARK R S.Traumatic brain injury research highlights in 2015[J].Lancet Neurol,2016,15(1):13-15.
[2] 王海涛,王锦波.重型脑损伤患者早期肝肾功能变化临床研究[J].新乡医学院学报,2016,33(5):421-424.
[3] KERNIE S G,PARENT J M.Forebrain neurogenesis after focal Ischemic and traumatic brain injury[J].Neurobiol Dis,2010,37(2):267-274.
[4] 杨伟锋,金保哲,张新中,等.丙戊酸对颅脑损伤大鼠海马成体神经干细胞原位激活的作用[J].新乡医学院学报,2016,33(6):469-472.
[5] ZHAO W Y,CHEN S B,WANG J J,et al.Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats[J].Brain Res,2017,1669:141-149.
[6] HSIEH J,SCHNEIDER J W.Neuroscience.Neural stem cells,excited[J].Science,2013,339(6127):1534-1535.
[7] MING G L,SONG H.Adult neurogenesis in the mammalian brain:significant answers and significant questions[J].Neuron,2011,70(4):687-702.
[8] CHEN C,MA T Z,WANG L N,et al.Mild hypothermia facilitates the long-term survival of newborn cells in the dentate gyrus after traumatic brain injury by diminishing a pro-apoptotic microenvironment[J].Neuroscience,2016,335:114-121.
[9] SONG J,ZHONG C,BONAGUIDI M A,et al.Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision[J].Nature,2012,489(7414):150-154.
[10] SPITZER N C.Electrical activity in early neuronal development[J].Nature,2006,444(7120):707-712.
[11] 路承彪.基于光敏蛋白的光控技术对神经细胞活动的时空定向控制[J].新乡医学院学报,2012,29(3):161-163.
[12] NAKANISHI S,OKAZAWA M.Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells[J].J Physiol,2006,575(Pt 2):389-395.
[13] EL-SHAMAYLEH Y,KOJIMA Y,SOETEDJO R,et al.Selective optogenetic control of purkinje cells in monkey cerebellum[J].Neuron,2017,95(1):51-62.
[14] BORDIA T,ZHANG D,PEREZ X A,et al.Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia[J].Exp Neurol,2016,286:32-39.
[15] MELCHIOR J R,FERRIS M J,STUBER G D,et al.Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release[J].J Neurochem,2015,134(5):833-844.
[16] YIZHAR O,FENNO L E,DAVIDSON T J,et al.Optogenetics in neural systems[J].Neuron,2011,71(1):9-34.
[17] GU Y,ARRUDA-CARVALHO M,WANG J,et al.Optical controlling reveals time-dependent roles for adult-born dentate granule cells[J].Nat Neurosci,2012,15(12):1700-1706.
[18] KARL C,COUILLARD-DESPRES S,PRANG P,et al.Neuronal precursor-specific activity of a human doublecortin regulatory sequence[J].J Neurochem,2005,92(2):264-282.
[19] 姜春莲,汪艳璐,罗玉萍.成年哺乳动物神经发生的研究进展[J].中国生物工程杂志,2017,37(5):107-112.
[20] ZHANG J,GIESERT F,KLOOS K,et al.A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons[J].BMC Neurosci,2010,11:158.

相似文献/References:

[1]刘晓帆,史新江,杜心顺,等.颅脑损伤后铁代谢的改变及其意义[J].新乡医学院学报,1995,12(03):244.
[2]程报国.外伤性脑梗塞48例临床分析[J].新乡医学院学报,2001,18(05):364.
[3]姜玲君.颅脑损伤后失语患者语言训练疗效探讨[J].新乡医学院学报,2002,19(05):439.
[4]王莉莉,郭伟.重度颅脑损伤患者气管切开术后呼吸道护理 [J].新乡医学院学报,2007,24(03):304.
[5]胡云香.重型颅脑损伤患者鼻饲饮食的临床护理[J].新乡医学院学报,2008,25(05):522.
[6]姚 琳.丙泊酚对急性重型颅脑损伤患者的脑保护作用[J].新乡医学院学报,2016,33(9):804.[doi:10.7683/xxyxyxb.2016.09.019]
 YAO Lin.Protective effect of propofol on brain tissue of patients with acute severe craniocerebral injury[J].Journal of Xinxiang Medical University,2016,33(10):804.[doi:10.7683/xxyxyxb.2016.09.019]
[7]王喜梅,单艳华,王 东,等.神经节苷脂钠注射液对急性重症颅脑损伤患者的脑保护作用[J].新乡医学院学报,2014,31(11):954.[doi:10.7683/xxyxyxb.2014.11.026]
[8]石 勇,徐 辉,邓思高,等.颅脑损伤并发脑心综合征患者血乳酸、心肌酶及氧化应激和神经功能指标水平的变化[J].新乡医学院学报,2020,37(7):633.[doi:10.7683/xxyxyxb.2020.07.008]
 SHI Yong,XU Hui,DENG Sigao,et al.Changes of the levels of blood lactate and the indexes of myocardial enzymes,oxidative stress,neurological function in patients with craniocerebral injury complicated with cerebrocardiac syndrome[J].Journal of Xinxiang Medical University,2020,37(10):633.[doi:10.7683/xxyxyxb.2020.07.008]
[9]毋 涛,朱从健,汤明磊.曲克芦丁脑蛋白水解物治疗颅脑损伤疗效观察[J].新乡医学院学报,2019,36(3):285.[doi:10.7683/xxyxyxb.2019.03.020]
 WU Tao,ZHU Cong-jian,TANG Ming-lei.Effect of troxerutin and cerebroprotein hydrolysate in treatment of craniocerebral injury[J].Journal of Xinxiang Medical University,2019,36(10):285.[doi:10.7683/xxyxyxb.2019.03.020]
[10]赵继红,张红梅,武文杰.重型颅脑损伤患者常见并发症原因分析及护理措施[J].新乡医学院学报,2017,34(5):446.[doi:10.7683/xxyxyxb.2017.05.027]
 ZHAO Ji-hong,ZHANG Hong-mei,WU Wen-jie.Causes analysis and nursing measures of common complications in patients with severe craniocerebral injury[J].Journal of Xinxiang Medical University,2017,34(10):446.[doi:10.7683/xxyxyxb.2017.05.027]

更新日期/Last Update: 2018-10-05