[1]郭源辉,段佳佳,刘传鑫,等.核因子E2相关因子2介导的铁死亡在糖尿病心肌病中的发病机制及其靶向治疗研究进展[J].新乡医学院学报,2023,40(12):1178-1183.[doi:10.7683/xxyxyxb.2023.12.015]
 GUO Yuanhui,DUAN Jiajia,LIU Chuanxin,et al.Research progress on pathogenesis and targeted therapy of ferroptosis mediated by nuclear factor E2-related factor 2 in diabetic cardiomyopathy[J].Journal of Xinxiang Medical University,2023,40(12):1178-1183.[doi:10.7683/xxyxyxb.2023.12.015]
点击复制

核因子E2相关因子2介导的铁死亡在糖尿病心肌病中的发病机制及其靶向治疗研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
40卷
期数:
2023年12
页码:
1178-1183
栏目:
综述
出版日期:
2023-12-05

文章信息/Info

Title:
Research progress on pathogenesis and targeted therapy of ferroptosis mediated by nuclear factor E2-related factor 2 in diabetic cardiomyopathy
作者:
郭源辉123段佳佳14刘传鑫123姜宏卫123
(1.河南科技大学临床医学院,河南 洛阳 471003;2.河南科技大学第一附属医院内分泌代谢中心,河南 洛阳 471003;3.河南省罕见病实验室,河南 洛阳 471003;4.河南科技大学第一附属医院检验科,河南 洛阳 471003)
Author(s):
GUO Yuanhui123DUAN Jiajia14LIU Chuanxin123JIANG Hongwei123
(1.Clinical Medical College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China;2.Endocrinology and Metabolism Center,the First Affiliated Hospital of Henan University of Science and Technology,Luoyang 471003,Henan Province,China;3.Rare Disease Laboratory of Henan Province,Luoyang 471003,Henan Province,China;4.Department of Clinical Laboratory,the First Affiliated Hospital of Henan University of Science and Technology,Luoyang 471003,Henan Province,China)
关键词:
铁死亡糖尿病心肌病核因子E2相关因子2靶向治疗氧化应激
Keywords:
ferroptosisdiabetic cardiomyopathynuclear factor E2-related factor 2targeted therapyoxidative stress
分类号:
R587.1
DOI:
10.7683/xxyxyxb.2023.12.015
文献标志码:
A
摘要:
糖尿病心肌病为糖尿病患者心力衰竭和死亡的主要原因之一。糖尿病心肌病的发生发展过程中存在铁死亡的典型证据,说明铁死亡与糖尿病心肌病相关。活性氧大量生成与抗氧化能力丧失所导致的氧化应激被认为是导致糖尿病心肌病的主要机制。作为氧化应激反应关键调控因子之一,核因子E2相关因子2(NRF2)及其靶基因在预防与治疗糖尿病心肌病中发挥重要作用。本文对铁死亡机制和糖尿病心肌病发病机制进行概述,阐述二者之间的关系,并重点就NRF2在糖尿病心肌病发生发展过程中分子机制及其靶向治疗效果进行综述。
Abstract:
Diabetic cardiomyopathy is one of the leading causes of heart failure and death in diabetic patients.There is classic evidence of ferroptosis in the development of diabetic cardiomyopathy,which proves that ferroptosis is correlated with the diabetic cardiomyopathy.Oxidative stress caused by excessive production of reactive oxygen species and loss of antioxidant capacity is considered to be the main mechanism leading to diabetic cardiomyopathy.As one of the key regulatory factors of oxidative stress,nuclear factor E2-related factor 2 (NRF2) and its target gene play an important role in the prevention and treatment of diabetic cardiomyopathy.This article summarizes the mechanism of ferroptosis and the pathogenesis of diabetes cardiomyopathy,and expounds the relationship between them,and focuses on the molecular mechanism of NRF2 in the development of diabetic cardiomyopathy and its targeted treatment effect.

参考文献/References:

[1] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[2] STOCKWELL B R,FRIEDMANN ANGELI J P,BAYIR H,et al.Ferroptosis:a regulated cell death nexus linking metabolism,redox biology,and disease[J].Cell,2017,171(2):273-285.
[3] CHEN H,YANG X,LU K,et al.Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice[J].Toxicol Lett,2017,278:48-58.
[4] CHEN Q M,MALTAGLIATI A J.Nrf2 at the heart of oxidative stress and cardiac protection[J].Physiol Genomics,2018,50(2):77-97.
[5] FAN Z,WIRTH A K,CHEN D,et al.Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J].Oncogenesis,2017,6(8):e371.
[6] ABDALKADER M,LAMPINEN R,KANNINEN K M,et al.Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration[J].Front Neurosci,2018,12:466.
[7] HU X,RAJESH M,ZHANG J,et al.Protection by dimethyl fumarate against diabetic cardiomyopathy in type 1 diabetic mice likely via activation of nuclear factor erythroid-2 related factor 2[J].Toxicol Lett,2018,287:131-141.
[8] WANG G,SONG X,ZHAO L,et al.Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity[J].Biomed Res Int,2018,2018:2150218.
[9] ZANG H,WU W,QI L,et al.Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice[J].Diabetes,2020,69(12):2720-2734.
[10] LI Z,CHEN L,CHEN C,et al.Targeting ferroptosis in breast cancer[J].Biomark Res,2020,8(1):58.
[11] TANG D,CHEN X,KANG R,et al.Ferroptosis:molecular mechanisms and health implications[J].Cell Res,2021,31(2):107-125.
[12] JIANG M,HU R,YU R,et al.A narrative review of mechanisms of ferroptosis in cancer:new challenges and opportunities[J].Ann Transl Med,2021,9(20):1599.
[13] KAJARABILLE N,LATUNDE-DADA G O.Programmed cell-death by ferroptosis:antioxidants as mitigators[J].Int J Mol Sci,2019,20(19):4968.
[14] GAO M,MONIAN P,QUADRI N,et al.Glutaminolysis and transferrin regulate ferroptosis[J].Mol Cell,2015,59(2):298-308.
[15] BOGDAN A R,MIYAZAWA M,HASHIMOTO K,et al.Regulators of iron homeostasis:new players in metabolism,cell death,and disease[J].Trends Biochem Sci,2016,41(3):274-286.
[16] SHEN Z,LIU T,LI Y,et al.Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors[J].ACS Nano,2018,12(11):11355-11365.
[17] LATUNDE-DADA G O.Ferroptosis:role of lipid peroxidation,iron and ferritinophagy[J].Biochim Biophys Acta Gen Subj,2017,1861(8):1893-1900.
[18] LIANG C,ZHANG X,YANG M,et al.Recent progress in ferroptosis inducers for cancer therapy[J].Adv Mater,2019,31(51):e1904197.
[19] KAGAN V E,MAO G,QU F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nat Chem Biol,2017,13(1):81-90.
[20] DIXON S J,WINTER G E,MUSAVI L S,et al.Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J].ACS Chem Biol,2015,10(7):1604-1609.
[21] DOLL S,PRONETH B,TYURINA Y Y,et al.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nat Chem Biol,2017,13(1):91-98.
[22] SHINTOKU R,TAKIGAWA Y,YAMADA K,et al.Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J].Cancer Sci,2017,108(11):2187-2194.
[23] SHAH R,SHCHEPINOV M S,PRATT D A.Resolving the role of lipoxygenases in the initiation and execution of ferroptosis[J].ACS Cent Sci,2018,4(3):387-396.
[24] ZOU Y,LI H,GRAHAM E T,et al.Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J].Nat Chem Biol,2020,16(3):302-309.
[25] YAN B,AI Y,SUN Q,et al.Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J].Mol Cell,2021,81(2):355-369.e10.
[26] LI J,CAO F,YIN H,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88.
[27] BRIDGES R,LUTGEN V,LOBNER D,et al.Thinking outside the cleft to understand synaptic activity:contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling[J].Pharmacol Rev,2012,64(3):780-802.
[28] SEIBT T M,PRONETH B,CONRAD M.Role of GPX4 in ferroptosis and its pharmacological implication[J].Free Radic Biol Med,2019,133:144-152.
[29] LI N,JIANG W,WANG W,et al.Ferroptosis and its emerging roles in cardiovascular diseases[J].Pharmacol Res,2021,166:105466.
[30] INGOLD I,BERNDT C,SCHMITT S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell,2018,172(3):409-422.e21.
[31] LIU X,ZHANG Y,ZHUANG L,et al.NADPH debt drives redox bankruptcy:SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation[J].Genes Dis,2021,8(6):731-745.
[32] JIA G,HILL M A,SOWERS J R.Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J].Circ Res,2018,122(4):624-638.
[33] BOUDINA S,ABEL E D.Diabetic cardiomyopathy revisited[J].Circulation,2007,115(25):3213-3223.
[34] KANNEL W B,HJORTLAND M,CASTELLI W P.Role of diabetes in congestive heart failure:the Framingham study[J].Am J Cardiol,1974,34(1):29-34.
[35] TARQUINI R,PALA L,BRANCATI S,et al.Clinical approach to diabetic cardiomyopathy:a review of human studies[J].Curr Med Chem,2018,25(13):1510-1524.
[36] RITCHIE R H,ABEL E D.Basic mechanisms of diabetic heart disease[J].Circ Res,2020,126(11):1501-1525.
[37] ANEJA A,TANG W H W,BANSILAL S,et al.Diabetic cardiomyopathy:insights into pathogenesis,diagnostic challenges,and therapeutic options[J].Am J Med,2008,121(9):748-757.
[38] LI W,LI W,LENG Y,et al.Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress[J].DNA Cell Biol,2020,39(2):210-225.
[39] WU H,WANG F,TA N,et al.The multifaceted regulation of mitochondria in ferroptosis[J].Life,2021,11(3):222.
[40] ZOU C,LIU X,XIE R,et al.Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats[J].Biochem Biophys Res Commun,2017,486(4):930-936.
[41] WANG S Y,ZHU S,WU J,et al.Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy[J].J Mol Med (Berl),2020,98(2):245-261.
[42] SHAH M S,BROWNLEE M.Molecular and cellular mechanisms of cardiovascular disorders in diabetes[J].Circ Res,2016,118(11):1808-1829.
[43] DIXON S J,STOCKWELL B R.The hallmarks of ferroptosis[J].Annu Rev Cancer Biol,2019,3:35-54.
[44] DODSON M,CASTRO-PORTUGUEZ R,ZHANG D D.NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J].Redox Biol,2019,23:101107.
[45] ZANG H,MATHEW R O,CUI T.The dark side of Nrf2 in the heart[J].Front Physiol,2020,11:722.
[46] GAO L,LIU Y,GUO S,et al.LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(10):3322-3338.
[47] QIAO S,OLSON J M,PATERSON M,et al.MicroRNA-21 mediates isoflurane-induced cardioprotection against ischemia-reperfusion injury via akt/nitric oxide synthase/mitochondrial permeability transition pore pathway[J].Anesthesiology,2015,123(4):786-798.
[48] OLSON J M,YAN Y,BAI X,et al.Up-regulation of microRNA-21 mediates isoflurane-induced protection of cardiomyocytes[J].Anesthesiology,2015,122(4):795-805.
[49] SEKAR D,VENUGOPAL B,SEKAR P,et al.Role of microRNA 21 in diabetes and associated/related diseases[J].Gene,2016,582(1):14-18.
[50] GE Z D,LI Y,QIAO S,et al.Failure of isoflurane cardiac preconditioning in obese type 2 diabetic mice involves aberrant regulation of microRNA-21,endothelial nitric-oxide synthase,and mitochondrial complex I[J].Anesthesiology,2018,128(1):117-129.
[51] ERKENS R,KRAMER C M,LCKSTDT W,et al.Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy,decreased expression of SERCA2a,and preserved endothelial function[J].Free Radic Biol Med,2015,89:906-917.
[52] DAVID J A,RIFKIN W J,RABBANI P S,et al.The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus[J].J Diabetes Res,2017,2017:1-15.
[53] DLUDLA P V,MULLER C J,JOUBERT E,et al.Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression[J].Molecules,2017,22(1):129.
[54] ZHANG Z,ZHOU S,JIANG X,et al.The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome[J].Rev Endocr Metab Disord,2015,16(1):35-45.
[55] WANG N,MA H,LI J,et al.HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes[J].J Mol Cell Cardiol,2021,150:65-76.
[56] BERSUKER K,HENDRICKS J M,LI Z,et al.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784):688-692.
[57] HUYNH K,KIRIAZIS H,DU X J,et al.Coenzyme Q10 attenuates diastolic dysfunction,cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes[J].Diabetologia,2012,55(5):1544-1553.
[58] SHIRPOOR A,SALAMI S,KHADEM-ANSARI M H,et al.Cardioprotective effect of vitamin E:rescues of diabetes-induced cardiac malfunction,oxidative stress,and apoptosis in rat[J].J Diabetes Complications,2009,23(5):310-316.
[59] JENKINS T,GOUGE J.Nrf2 in cancer,detoxifying enzymes and cell death programs[J].Antioxidants,2021,10(7):1030.
[60] GU J,CHENG Y,WU H,et al.Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy[J].Diabetes,2017,66(2):529-542.
[61] WANG Y,CHEN J,LI S,et al.Exogenous spermine attenuates rat diabetic cardiomyopathy via suppressing ROS-p53 mediated downregulation of calcium-sensitive receptor[J].Redox Biol,2020,32:101514.
[62] DUAN J Y,LIN X,XU F,et al.Ferroptosis and its potential role in metabolic diseases:a curse or revitalization?[J].Front Cell Dev Biol,2021,9:701788.
[63] CUADRADO A,MARTN-MOLDES Z,YE J,et al.Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family,GTP-binding protein RAC1 during inflammation[J].J Biol Chem,2014,289(22):15244-15258.
[64] STEELE M L,FULLER S,PATEL M,et al.Effect of Nrf2 activators on release of glutathione,cysteinylglycine and homocysteine by human U373 astroglial cells[J].Redox Biol,2013,1(1):441-445.
[65] CHIN M P,BAKRIS G L,BLOCK G A,et al.Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes:post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study[J].Am J Nephrol,2018,47(1):40-47.
[66] OHKUMA T,PETERS S A E,WOODWARD M.Sex differences in the association between diabetes and cancer:a systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events[J].Diabetologia,2018,61(10):2140-2154.
[67] WANG H,LIU X,LONG M,et al.NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis[J].Sci Transl Med,2016,8(334):334ra51.

相似文献/References:

[1]罗羽田,李世朋,徐红伟,等.铁死亡在肝癌中的调控机制及作用研究进展[J].新乡医学院学报,2021,38(1):091.[doi:10.7683/xxyxyxb.2021.01.020]
[2]刘迎博,茹美华,李建强.铁死亡调控机制及其在肺纤维化中的作用研究进展[J].新乡医学院学报,2022,39(11):1079.[doi:10.7683/xxyxyxb.2022.11.016]
 LIU Yingbo,RU Meihua,LI Jianqiang.Research progress on the regulatory mechanism of ferroptosis and its role in pulmonary fibrosis[J].Journal of Xinxiang Medical University,2022,39(12):1079.[doi:10.7683/xxyxyxb.2022.11.016]

更新日期/Last Update: 2023-12-05