[1]肖捷,纪华,王宵,等.启动子上的增强子和CpG岛在转基因沉默和位置效应中的作用[J].新乡医学院学报,2023,40(9):801-809.[doi:10.7683/xxyxyxb.2023.09.001]
 XIAO Jie,JI Hua,WANG Xiao,et al.Roles of enhancers and CpG islands on promoters in transgene silencing and position effect[J].Journal of Xinxiang Medical University,2023,40(9):801-809.[doi:10.7683/xxyxyxb.2023.09.001]
点击复制

启动子上的增强子和CpG岛在转基因沉默和位置效应中的作用
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
40卷
期数:
2023年9
页码:
801-809
栏目:
基础研究
出版日期:
2023-09-05

文章信息/Info

Title:
Roles of enhancers and CpG islands on promoters in transgene silencing and position effect
作者:
肖捷1纪华2王宵3王静3刘凌云3李美荃3王斌3
(1.大理大学药学院,云南 大理 671000;2.云南省第一人民医院肿瘤科,云南 昆明 650034;3.昆明学院云南教育厅新型畜禽疫苗及产业关键技术工程研究中心,云南 昆明 650214)
Author(s):
XIAO Jie1JI Hua2WANG Xiao3WANG Jing3LIU Lingyun3LI Meiquan3WANG Bin3
(1.College of Pharmacy,Dali University,Dali 671000,Yunnan Province,China;2.Department of Oncology,the First People′s Hospital of Yunnan Province,Kunming 650034,Yunnan Province,China;3.Engineering Research Center of New Livestock and Poultry Vaccine and Key Industry Technology,Yunnan Education Department,Kunming University,Kunming 650214,Yunnan Province,China)
关键词:
增强子CpG岛转基因沉默位置效应哺乳动物细胞表达载体
Keywords:
enhancerCpG islandtransgene silencingposition effectmammalian cell expression vector
分类号:
R31
DOI:
10.7683/xxyxyxb.2023.09.001
文献标志码:
A
摘要:
目的 探讨哺乳动物细胞表达载体启动子上增强子和CpG岛调控元件在转基因沉默和位置效应中的作用。
方法 应用带增强子的八聚体结合转录因子4(OCT4)基因启动子、带CpG岛的性别决定区Y框蛋白2(SOX2)基因启动子、带增强子和CpG岛的巨细胞病毒(CMV)基因启动子以及不含近端增强子和CpG岛的NANOG基因启动子构建哺乳动物细胞表达载体,并分别转染中国仓鼠卵巢细胞株CHO-K1细胞和人胚胎肾细胞(HEK293)。应用Image J 软件中Mean算法计算OCT4、SOX2、CMV和NANOG基因启动子在CHO-K1细胞和HEK293细胞介导的增强绿色荧光蛋白(EGFP)表达的荧光强度,应用Image J 软件中Mininum、Maxentropy、Mean 3种算法分别计算OCT4、SOX2、CMV和NANOG基因启动子4种载体稳定转染CHO-K1细胞后形成的多个单细胞克隆混合生长样品在同一个样本中最大荧光强度的细胞、大于平均荧光强度的所有细胞和最小荧光强度的所有细胞的EGFP平均荧光强度;应用有限稀释法从G418筛选后获得的稳定转染的多个单克隆混合的CHO-K1细胞中,分别筛选含EGFP的pE-C1、pE-Oct4、pE-Sox2、pE-Nanog质粒稳定转染CHO-K1细胞的单克隆细胞,每个质粒载体随机筛选3个单克隆细胞,应用Image J软件分析EGFP平均荧光强度;应用酶联免疫吸附法检测转染第20、30天CHO-K1细胞中EGFP蛋白表达水平,应用实时荧光定量聚合酶链式反应法检测转染第20、30天CHO-K1细胞中EGFP mRNA表达水平。
结果 SOX2基因启动子在CHO-K1细胞和HEK293细胞中介导表达的EGFP平均荧光强度比较差异无统计学意义(t=0.770,P>0.05)。OCT4、CMV、NANOG基因启动子在CHO-K1细胞中介导表达的EGFP平均荧光强度显著高于HEK293细胞(t=7.000、11.100、4.900,P<0.05)。SOX2基因启动子于转染第20、30天在CHO-K1细胞中介导表达的EGFP蛋白水平比较差异无统计学意义(t=0.330,P>0.05)。CMV基因启动子于转染第20天在CHO-K1细胞中介导表达的EGFP蛋白水平显著低于转染第30天(t=3.770,P<0.05);OCT4基因启动子于转染第20、30天在CHO-K1细胞中介导表达的EGFP蛋白水平比较差异无统计学意义(t=2.500,P>0.05);NANOG基因启动子于转染第20、30天在CHO-K1细胞中介导表达的EGFP蛋白表达水平比较差异无统计学意义(t=0.014,P>0.05)。转染第20天与转染第30天SOX2、CMV、NANOG基因启动子在CHO-K1细胞中介导表达的EGFP平均荧光强度值比较差异均无统计学意义(t=0.130、0.830、0.210,P>0.05);转染第30天,OCT4基因启动子在CHO-K1细胞中介导表达的EGFP平均荧光强度值显著低于转染第20天(t=5.750,P<0.05)。SOX2、CMV、OCT4、NANOG基因启动子在CHO-K1细胞中介导表达的EGFP蛋白水平比较差异无统计学意义(F=4.070,P>0.05)。CMV、OCT4、NANOG基因启动子在CHO-K1细胞中介导的EGFP mRNA相对表达量显著高于SOX2基因启动子(t=5.440、5.000、5.740,P<0.05);CMV、OCT4基因启动子在CHO-K1细胞中介导的EGFP mRNA相对表达量显著高于NANOG基因启动子(t=3.220、4.270,P<0.05);CMV基因启动子在CHO-K1细胞中介导的EGFP mRNA相对表达量高于OCT4基因启动子,但差异无统计学意义(t=1.270,P>0.05)。SOX2基因启动子介导表达的EGFP在转录水平和转录后水平差异最大(t=16.900,P<0.05);NANOG基因启动子介导表达的EGFP在转录水平和转录后水平差异次之(t=14.930,P<0.05);OCT4和CMV基因启动子介导表达的EGFP在转录水平和转录后水平差异最小(t=2.060、0.430,P>0.05)。应用Mininum、Maxentropy、Mean 3种算法计算OCT4基因启动子在多克隆下介导表达的EGFP的荧光强度比较差异无统计学意义(F=3.720,P>0.05),SOX2、CMV和NANOG基因启动子在多克隆下介导EGFP表达的荧光强度比较差异均有统计学意义(F=516.400、428.500、28.120,P<0.05)。不同单克隆细胞中的差异分析显示,4种载体在不同单克隆细胞中介导表达的 EGFP 荧光强度值的标准误差相比,从高到低依次为NANOG基因启动子在不同单克隆细胞中介导表达的EGFP荧光强度值标准误差、SOX2基因启动子在不同单克隆细胞中介导表达的EGFP荧光强度值标准误差、OCT4基因启动子在不同单克隆细胞中介导表达的EGFP荧光强度值标准误差、CMV基因启动子在不同单克隆细胞中介导表达的EGFP荧光强度值标准误差,且OCT4基因启动子与SOX2、CMV基因启动子在单克隆细胞中介导表达的EGFP平均荧光强度比较差异有统计学意义(t=3.070、4.360,P<0.05)。
结论 带CpG岛的启动子能在转录后克服转基因沉默效应,带增强子的启动子具有克服位置效应的作用;二者的恰当组合可用于设计在哺乳动物细胞中高效稳定表达的启动子。
Abstract:
Objective To explore the role of enhancers and CpG island regulatory elements on the promoter in transgenic silencing and positional effects in mammalian cell expression vectors.
Methods Mammalian cell expression vectors were constructed by using the octamer binding transcription factor 4 (OCT4) gene promoter with enhancer,the sex determining region Y box protein 2 (SOX2) gene promoter with CpG island,the cytomegalovirus (CMV) gene promoter with enhancer and CpG island,and the NANOG gene promoter without proximal enhancer and CpG island,and they were transformed into CHO-K1 cells and human embryonic kidney 293 (HEK293) cells,respectively.The fluorescence intensity of enhanced green fluorescent protein (EGFP) mediated by OCT4,SOX2,CMV and NANOG gene promoter in CHO-K1 and HEK293 cells was calculated by using the Mean algorithm in Image J software;the mean fluorescence intensity of EGFP in the all cells with the strongest fluorescence intensity in the same sample,all cells with greater than the average fluorescence intensity and all cells with the smallest fluorescence intensity of multiple single cell clones of CHO-K1 cells formed by stable transfection of OCT4,SOX2,CMV and NANOG gene promoter were calculated by using Mininum,Maxentropy and Mean algorithms in Image J software,respectively.pE-C1,pE-Oct4,pE-Sox2 and pE-Nanog plasmid stably transfected monoclonal cells was screened by using limited dilution method from the stable transfected multiple monoclonal mixture of CHO-K1 cells obtained after G418 screening,and three monoclonal cells were randomly screened in each plasmid vector,and the mean fluorescence intensity of EGFP was analyzed by Image J software;the expression level of EGFP protein in CHO-K1 cells on the 20th and 30th day of transfection was detected by using enzyme-linked immunosorbent assay,and the expression level of EGFP mRNA in CHO-K1 cells on the 20th and 30th day of transfection was detected by using real-time fluorescence quantitative polymerase chain reaction.
Results There was no statistically significant difference in the mean fluorescence intensity of EGFP mediated by the SOX2 gene promoter between CHO-K1 cells and HEK293 cells (t=0.770,P>0.05);the mean fluorescence intensity of EGFP mediated by the OCT4,CMV and NANOG gene promoters in CHO-K1 cells was significantly higher than that in HEK293 cells (t=7.000,11.100,4.900;P<0.05).There was no statistically significant difference in EGFP protein level mediated by SOX2 gene promoter in CHO-K1 cells on the 20th and 30th day of transfection (t=0.330,P>0.05);the level of EGFP protein mediated by CMV gene promoter in CHO-K1 cells on the 20th day of transfection was significantly lower than that on the 30th day of transfection (t=3.770,P<0.05);there was no statistically significant difference in EGFP protein level mediated by the OCT4 gene promoter in CHO-K1 cells on the 20th and 30th day of transfection (t=2.500,P>0.05);there was no statistically significant difference in EGFP protein level mediated by the NANOG gene promoter in CHO-K1 cells on the 20th and 30th day of transfection (t=0.014,P>0.05).There was no statistically significant difference in the mean fluorescence intensity of EGFP mediated by SOX2,CMV,NANOG gene promoter in CHO-K1 cells between the 20th and 30th day of transfection (t=0.130,0.830,0.210;P>0.05);the mean fluorescence intensity of EGFP mediated by the OCT4 gene promoter in CHO-K1 cells on the 30th day of transfection was significantly lower than that on the 20th day of transfection (t=5.750,P<0.05).There was no statistically significant difference in EGFP protein level mediated by SOX2,CMV,OCT4,NANOG gene promoters in CHO-K1 cells (F=4.070,P>0.05).The relative expression level of EGFP mRNA mediated by CMV,OCT4,NANOG gene promoters was significantly higher than that of SOX2 gene promoter in CHO-K1 cells (t=5.440,5.000,5.740;P<0.05);the relative expression level of EGFP mRNA mediated by CMV and OCT4 gene promoters was significantly higher than that of NANOG gene promoter in CHO-K1 cells (t=3.220,4.270;P<0.05);the relative expression level of EGFP mRNA mediated by CMV gene promoter was significantly higher than that of OCT4 gene promoter in CHO-K1 cells,but the difference was not significant (t=1.270,P>0.05).The expression of EGFP mediated by SOX2 gene promoter showed the greatest difference at the transcriptional and posttranscriptional levels (t=16.900,P<0.05),followed by the EGFP expression mediated by NANOG gene promoter at the transcriptional and posttranscriptional levels (t=14.930,P<0.05),and the expression of EGFP mediated by OCT4 and CMV gene promoters showed the smallest difference at the transcriptional and posttranscriptional levels (t=2.060,0.430;P>0.05).There was no statistically significant difference in the fluorescence intensity of EGFP mediated by OCT4 gene promoter under polyclonal conditions calculated by using Minimum,Maxentropy,and Mean(F=3.720,P>0.05).However,there were statistically significant differences in the fluorescence intensity of EGFP expression mediated by SOX2,CMV,NANOG gene promoters under polyclonal conditions (F=516.400,428.500,28.120;P<0.05).The difference analysis in different monoclone cells showed that the standard error of EGFP fluorescence intensity of the four vectors in different monoclone cells from high to low was the fluorescence intensity standard error of NANOG gene promoter mediated EGFP expression in different monoclonal cells,the fluorescence intensity standard error of SOX2 gene promoter mediated EGFP expression in different monoclonal cells,the standard error of fluorescence intensity value of OCT4 gene promoter mediated EGFP expression in different monoclone cells,and the standard error of fluorescence intensity value of CMV gene promoter mediated EGFP expression in different monoclone cells.And there were statistically significant differences in the mean fluorescence intensity of EGFP of monoclone cells between OCT4 gene promoter and SOX2,CMV gene promoters(t=3.070,4.360;P<0.05).
Conclusion The promoter containing CpG islands can overcome transgene silencing effect after transcription,the promoters containing enhancers can overcome the position effect.The appropriate combination of CpG islands and enhancers can be used to design promoters for efficient and stable expression in mammalian cells.

参考文献/References:

[1] 周娜娜,王小艳,张媛,等.重组蛋白药物的生产技术进展[J].生物技术进展,2021,11(6):724-731.
ZHOU N N,WANG X Y,ZHANG Y,et al.Progress on the production technology of recombinant therapeutic proteins[J].Curr Biotechnol,2021,11(6):724-731.
[2] 韩婧.基因沉默及克服策略[J].沧州师范专科学校学报,2006,22(4):54-55,59.
HAN J.Gene silencing and the countermeasures[J].J Cangzhou Teachers′ Coll,2006,22(4):54-55,59.
[3] 王正想,刘思源.基因沉默治疗恶性肿瘤的研究进展[J].河北医科大学学报,2017,38(8):988-992.
WANG Z X,LIU S Y.Research progress of gene silencing for the treatment of malignant tumors[J]. J Hebei Med Univ,2017,38(8):988-992.
[4] EL-SAPPAH A H,YAN K,HUANG Q,et al.Comprehensive mechanism of gene silencing and its role in plant growth and deve-lopment[J].Front Plant Sci,2021,12:705249.
[5] WEILER K S,WAKIMOTO B T.Heterochromatin and gene expression in Drosophila[J].Ann Rev Genet,1995,29:577-605.
[6] GUI Q,DENG S,ZHOU Z,et al.Transcriptome analysis in yeast reveals the externality of position effects[J].Mol Biol Evol,2021,38(8):3294-3307.
[7] CHEN X,ZHANG J.The genomic landscape of position effects on protein expression level and noise in yeast[J].Cell Syst,2016,2(5):347-354.
[8] DAO L T M,GALINDO-ALBARRN A O,CASTRO-MONDRAGON J A,et al.Genome-wide characterization of mammalian promoters with distal enhancer functions[J].Nat Genet,2017,49(7):1073-1081.
[9] DAO L T M,SPICUGLIA S.Transcriptional regulation by promoters with enhancer function[J].Transcription,2018,9(5):307-314.
[10] BOGDANOVI C' O,SMITS A H,MUSTIENES E D L C,et al.Active DNA demethylation at enhancers during the vertebrate phylotypic period[J].Nat Genet,2016,48(4):417-426.
[11] 许登高,周扬,潘庆杰.哺乳动物CpG岛甲基化研究进展[J].青岛农业大学学报(自然科学版),2012,29(4):252-260,266.
XU D G,ZHOU Y,PAN Q J.The methylation of CpG island in mammals[J].J Qingdao Agric Univ (Nat Sci Ed),2012,29(4):252-260,266.
[12] YEOM Y I,FUHRMANN G,OVITT C E,et al.Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells[J].Development,1996,122(3):881-894.
[13] 王斌,郭庆,刘凌云,等.染色质调节元件与不同启动子的相互作用对基因表达调控的影响[J].生物工程学报,2021,37(9):3310-3322.
WANG B,GUO Q,LIU L Y,et al.Effects of the interaction of chromatin regulatory elements with different.promoters on the regulation of gene expression[J].Chin J Biotechnol,2021,37(9):3310-3322.
[14] 杜宝珠,覃玉凤,杨晓亮,等.CMV启动子驱动报告基因EGFP在转基因猪和转基因小鼠不同组织中的表达效率比较[J].农业生物技术学报,2015,23(10):1327-1333.
DU B Z,QIN Y F,YANG X L,et al.Comparison of the expression levels of EGFP gene driven by CMV.promoter in different tissues of the transgenic pigs (Sus scrofa) and mice (Mus musculus)[J].J Agric Biotechnol,2015,23(10):1327-1333.
[15] 来大志,付玲,于长明,等.用于生产重组蛋白药物的抗凋亡CHO宿主细胞株的建立[J].生物工程学报,2003,19(3):322-326.
LAI D Z,FU L,YU C M,et al.Construction of an anti-apoptosis CHO cell line for biopharmaceutical production[J].Chin J Biotechnol,2003,19(3):324-328.
[16] HU J,HAN J,LI H,et al.Human embryonic kidney 293 cells:a vehicle for biopharmaceutical manufacturing,structural biology,and electrophysiology[J].Cells Tissues Organs,2018,205(1):1-8.
[17] VAVOURI T,LEHNER B.Human genes with CpG island promoters have a distinct transcription-associated chromatin organization[J].Genome Biol,2012,13(11):R110.
[18] BLINOVA E A,NIKIFOROV V S,KOTIKOVA A I,et al.Methylation status of apoptosis genes and intensity of apoptotic death of peripheral blood lymphocytes in persons chronically exposed to radiation[J].Mol Biol (Mosk),2022,56(6):1072-1082.
[19] WILLIAMS S,MUSTOE T,MULCAHY T,et al.CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells[J].BMC Biotechnol,2005,5:17.
[20] LIU R,SUN J,ZHANG Z,et al.Cell-selective gene silencing in prostate cancer LNCap cells using prostate-specific membrane antigen promoter and enhancer in vitro and in vivo[J].Cell Biol Int,2012,36:863-872.
[21] NEUMAYR C,HABERLE V,SEREBRENI L,et al.Differential cofactor dependencies define distinct types of human enhancers[J].Nature,2022,606(7913):406-413.
[22] HU S,CHEN Z,GU W,et al.The transcriptional activity of WT1 gene promoter and enhancer in cell lines with diverse tissue origin[J].Int J Hematol,2008,87(5):498-506.
[23] HUGHES A L,SZCZUREK A T,KELLEY J R,et al.A CpG island-encoded mechanism protects genes from premature transcription termination[J].Nat Commun,2023,14(1):726.
[24] KUNKIEL J,GDECKE N,ACKERMANN M,et al.The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function[J].Sci Rep,2017,7(1):7919.
[25] ISODA T,MORIO T,TAKAGI M.Noncoding RNA transcription at enhancers and genome folding in cancer[J].Cancer Sci,2019,110(8):2328-2336.
[26] YOKOSHI M,FUKAYA T.Dynamics of transcriptional enhancers and chromosome topology in gene regulation[J].Dev Growth Differ,2019,61(5):343-352.
[27] CHOI H W,JOO J Y,HONG Y J,et al.Distinct enhancer activity of OCT4 in naive and primed mouse pluripotency[J].Stem Cell Reports,2016,7(5):911-926.
[28] 张芳燕,罗翔,董娜,等.5′UTR与基因表达的关系[J].科技经济市场,2011(3):13-16.
ZHANG F Y,LUO X,DONG N,et al.Relationship between 5′UTR and gene expression[J].Sci Econ Market,2011(3):13-16.
[29] ARAUJO P R,YOON K,KO D,et al.Before it gets started:regulating translation at the 5′ UTR[J].Comp Funct Genomics,2012,2012:475731.
[30] JIA L F,MAO Y,JI Q,et al.Decoding mRNA translatability and stability from the 5′ UTR[J]. Nat Struct Mol Biol,2020,27(9):814-821.
[31] ZHOU J,WAN J,SHE X E,et al."N6-methyladenosine guides mRNA alternative translation during integrated stress response"[J].Mol Cell,2018,69(4):636-647.
[32] GHELDOF N,SMITH E M,TABUCHI T M,et al.Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene[J].Nucleic Acids Res,2010,38(13):4325-4336
[33] DING M,LIU Y,LIAO X,et al.Enhancer RNAs (eRNAs):new insights into gene transcription and disease treatment[J].J Cancer,2018,9(13):2334-2340.
[34] WURMSER A,BASU S.Enhancer-promoter communication:it′s not just about contact[J].Front Mol Biosci,2022,9:867303.

更新日期/Last Update: 2023-09-05