[1]王志霞,杨 洋,刘 燕,等.外泌体在慢性阻塞性肺疾病发生发展中的作用研究进展[J].新乡医学院学报,2022,39(2):192-196.[doi:10.7683/xxyxyxb.2022.02.019]
 WANG Zhixia,YANG Yang,LIU Yan,et al.Research progress of exosomes in the occurrence and development of chronic obstructive pulmonary disease[J].Journal of Xinxiang Medical University,2022,39(2):192-196.[doi:10.7683/xxyxyxb.2022.02.019]
点击复制

外泌体在慢性阻塞性肺疾病发生发展中的作用研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
39
期数:
2022年2
页码:
192-196
栏目:
综述
出版日期:
2022-02-05

文章信息/Info

Title:
Research progress of exosomes in the occurrence and development of chronic obstructive pulmonary disease
作者:
王志霞杨 洋刘 燕张志强
(新乡医学院第一附属医院呼吸与危重症医学科,河南 卫辉 453100)
Author(s):
WANG ZhixiaYANG YangLIU YanZHANG Zhiqiang
(Department of Pulmonary and Critical Care Medicine,the First Affiliated Hospital of Xinxiang Medical University,Weihui 453100,Henan Province,China)
关键词:
慢性阻塞性肺疾病外泌体诊断治疗生物标志物
Keywords:
chronic obstructive pulmonary diseaseexosomediagnosistreatmentbiomarkers
分类号:
R563.9
DOI:
10.7683/xxyxyxb.2022.02.019
文献标志码:
A
摘要:
慢性阻塞性肺疾病(COPD)是一种发病率与病死率均较高的呼吸系统疾病,其病因与发病机制目前尚未明确。外泌体是广泛存在于各种体液并在细胞间通讯起到关键作用的物质,其与慢性呼吸系统疾病的发生、发展、预后等过程密切相关。外泌体可调控COPD患者肺上皮细胞炎症反应,有助于改善气道重塑和减轻肺部炎症反应;通过干预巨噬细胞来源外泌体延缓上皮间质转化过程,有望为慢性呼吸系统疾病的治疗提供新方向。另外,外泌体具有高度的循环稳定性和靶向性,有望成为理想的靶向药物载体。基于此,本文就外泌体的结构功能特点及其在COPD发生、发展过程中的作用机制进行综述。
Abstract:
Chronic obstructive pulmonary disease (COPD) is a kind of respiratory disease with high morbidity and mortality,and its etiology and pathogenesis are not clear yet.Exosomes widely exist in various body fluids and play a vital medium for communication,which is closely related to the occurrence,development and prognosis of chronic respiratory diseases.Exosomes can regulate the inflammatory response of pulmonary epithelial cells of patients with COPD,help to improve airway remodeling and reduce pulmonary inflammatory response.Moreover,exosomes is expected to provide a new direction for the treatment of chronic respiratory system by intervening macrophage derived exosomes to delay epithelial-mesenchymal transition process.In addition,exosomes have the characteristics of high stability and targeting in circulation,it has shown the possibility of being an ideal targeting drug carrier.Based on this,this paper reviews the structural and functional characteristics of exosomes and their mechanism in the occurrence and development of COPD.

参考文献/References:

[1] BRANDSMA C A,VAN DEN BERGE M,HACKETT T L,et al.Recent advances in chronic obstructive pulmonary disease pathogenesis:from disease mechanisms to precision medicine[J].J Pathol,2020,250(5):624-635.
[2] MOHAN A,AGARWAL S,CLAUSS M,et al.Extracellular vesicles:novel communicators in lung diseases[J].Respir Res,2020,21(1):175.
[3] VALADI H,EKSTRM K,BOSSIOS A,et al.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J].Nat Cell Biol,2007,9(6):654-659.
[4] LEVNEN B,BHAKTA N R,TORREGROSA PAREDES P,et al.Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients[J].J Allergy Clin Immunol,2013,131(3):894-903.
[5] NJOCK M S,GUIOT J,HENKET M A,et al.Sputum exosomes:promising biomarkers for idiopathic pulmonary fibrosis[J].Thorax,2019,74(3):309-312.
[6] XU H,LING M,XUE J,et al.Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J].Theranostics,2018,8(19):5419-5433.
[7] GUPTA R,RADICIONI G,ABDELWAHAB S,et al.Intercellular communication between airway epithelial cells is mediated by exosome-like vesicles[J].Am J Respir Cell Mol Biol,2019,60:209-220.
[8] TANNO A,FUJINO N,YAMADA M,et al.Decreases expression of a phagocytic receptor Siglec-l on alveolar macrophages in chronic obstructive pulmonary disease[J].Respir Res,2020,21:30.
[9] VESTBO J,HURD S S,AGUST A G,et al.Global strategy for the diagnosis,management,and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J].Am J Respir Crit Care Med,2013,187(4):347-365.
[10] MERCADO N,ITO K,BARNES P J.Accelerated ageing of the lung in COPD:new concepts[J].Thorax,2015,70(5):482-489.
[11] HURST J R,VESTBO J,ANZUETO A,et al.Susceptibility to exacerbation in chronic obstructive pulmonary disease[J].N Engl J Med,2010,363(12):1128-1138.
[12] XU H,LING M,XUE J,et al.Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J].Theranostics,2018,8(19):5419-5433.
[13] HE S,CHEN D,HU M,et al.Bronchial epithelial cell extracellular vesicles ameliorate epithelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization[J].Nanomedicine,2019,18:259-271.
[14] MAREMANDA K P,SUNDAR I K,RAHMAN I.Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice[J].Toxicol Appl Pharmacol,2019,385:114788.
[15] O′FARRELL H E,YANG I A.Extracellular vesicles in chronic obstructive pulmonary disease (COPD)[J].J Thorac Dis,2019,11(Suppl 17):S2141-S2154.
[16] FUJITA Y,ARAYA J,ITO S,et al.Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J].J Extracell Vesicles,2015,4:28388.
[17] LIU Y,LUO F,WANG B,et al.STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells[J].Cancer Lett,2016,370(1):125-135.
[18] LI Y,YIN Z R,FAN J S,et al.The role of exosomal miRNAs and lncRNAs in lung diseases[J].Signal Transduct Tar Ther,2019,4:47.
[19] MOON H G,KIM S H,GAO J,et al.CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke[J].Am J Physiol Lung Cell Mol Physiol,2014,307(4):L326-L337.
[20] JUN J I,LAU L F.Taking aim at the extracellular matrix:CCN proteins as emerging therapeutic targets[J].Nat Rev Drug Discov,2011,10(12):945-963.
[21] DU Y,DING Y,CHEN X,et al.MicroRNA-181c inhibits cigarette smoke-induced chronic obstructive pulmonary disease by regulating CCN1 expression[J].Respir Res,2017,18(1):155.
[22] NIETO M A,HUANG R Y,JACKSON R A,et al.EMT:2016[J].Cell,2016,166(1):21-45.
[23] SUNDAR I K,LI D,RAHMAN I.Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers[J].J Extracell Vesicles,2019,8(1):1684816.
[24] 王虹,樊希,殷佩浩,等.外泌体调控肿瘤微环境的研究现状[J].中国临床药理学杂志,2020,36(7):890-893.
WANG H,FAN X,YIN P H,et al.Research status of exosomes regulating tumor microenvironment[J].Chin J Clin Pharmacol,2020,36(7):890-893.
[25] WANG H,FAN X,YIN P H,et al.Research status of exosomes regulating tumor microenvironment[J].Chin J Clin Pharmacol,2020,36(7):890-893.
[26] MANTOVANI A,BISWAS S K,GALDIERO M R,et al.Macrophage plasticity and polarization in tissue repair and remodelling[J].J Pathol,2013,229(2):176-185.
[27] KULSHRESHTHA A,AHMAD T,AGRAWAL A,et al.Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation[J].J Allergy Clin Immunol,2013,131:1194-1203.
[28] ISMAIL N,WANG Y,DAKHLALLAH D,et al.Macrophage microvesicles induce macrophage differentiation and miR-223 transfer[J].Blood,2013,121(6):984-995.
[29] CORDAZZO C,PETRINI S,NERI T,et al.Rapid shedding of proinflammatorymicroparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization[J].Inflamm Res,2014,63(7):539-547.
[30] BOURDONNAY E,ZASONA Z,PENKE L R,et al.Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling[J].J Exp Med,2015,212(5):729-742.
[31] CHEN Y W,LEUNG J M,SIN D D.A systematic review of diagnostic biomarkers of COPD exacerbation[J].PLoS One,2016,11:e0158843.
[32] SHAW J G,VAUGHAN A,DENT A G,et al.Biomarkers of progression of chronic obstructive pulmonary disease (COPD)[J].J Thorac Dis,2014,6:1532-1547.
[33] TAN D B A,ARMITAGE J,TEO T H,et al.Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation[J].Respir Med,2017,132:261-264.
[34] ZHANG J,LI S,LI L,et al.Exosome and exosomal microRNA:trafficking,sorting,and function[J].Genomics Proteomics Bioinformatics,2015,13:17-24.
[35] YAMAMOTO T,KOSAKA N,OCHIYA T.Latest advances in extracellular vesicles:from bench to bedside[J].Sci Technol Adv Mater,2019,20(1):746-757.
[36] CHENG L,SHARPLES R A,SCICLUNA B J,et al.Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood[J].J Extracell Vesicles,2014,3:23743.
[37] HLIOT A,LANDKOCZ Y,ROY SAINT-GEORGES F,et al.Smoker extracellular vesicles influence status of human bronchial epithelial cells[J].Int J Hyg Environ Health,2017,220(2 Pt B):445-454.
[38] SERBAN K A,REZANIA S,PETRUSCA D N,et al.Structural and functional characterization of endothelial microparticles released by cigarette smoke[J].Sci Rep,2016,6:31596.
[39] XIE J X,FAN X,DRUMMOND C A,et al.MicroRNA profiling in kidney disease:plasma versus plasma-derived exosomes[J].Gene,2017,627:1-8.
[40] KADOTA T,FUJITA Y,YOSHIOKA Y,et al.Extracellular vesicles in chronic obstructive pulmonary disease[J].Int J Mol Sci,2016,17(11):1801.
[41] FUJITA Y,ARAYA J,OCHIYA T.Extracellular vesicles in smoking-related lung diseases[J].Oncotarget,2015,6(41):43144-43145.
[42] STOLK J,BROEKMAN W,MAUAD T,et al.A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema[J].QJM,2016,109:331-336.
[43] BROEKMAN W,KHEDOE P P S J,SCHEPERS K,et al.Mesenchymal stromal cells:a novel therapy for the treatment of chronic obstructive pulmonary disease[J].Thorax,2018,73:565.
[44] AHN S Y,PARK W S,KIM Y E,et al.Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury[J].Exp Mol Med,2018,50:26.
[45] KHATRI M,RICHARDSON L A,MEULIA T.Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model[J].Stem Cell Res Ther,2018,9:17.
[46] ZHU Y G,FENG X M,ABBOTT J,et al.Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice[J].Stem Cells,2014,32(1):116-125.

相似文献/References:

[1]史册.慢性阻塞性肺疾病急性发作期的营养支持治疗[J].新乡医学院学报,2001,18(06):444.
[2]袁晓梅,孙 云,袁宇.慢性阻塞性肺疾病肺心病患者血浆内皮素测定的临床价值[J].新乡医学院学报,2002,19(04):273.
[3]郭志强.慢性阻塞性肺疾病60例院内获得性真菌感染与耐药性分析 [J].新乡医学院学报,2006,23(02):000.
[4]程思远.慢性阻塞性肺疾病继发真菌感染65例病原菌分布及耐药性分析[J].新乡医学院学报,2009,26(01):073.
[5]杨华,周志才,奚峰,等.无创正压通气治疗慢性阻塞性肺疾病急性加重期伴Ⅱ型呼吸衰竭[J].新乡医学院学报,2011,28(02):216.
[6]殷波,惠复新,赵寅滢,等.慢性阻塞性肺疾病急性加重期三重酸碱失衡与急性生理学和慢性健康状况评分Ⅲ评分及预后的关系 [J].新乡医学院学报,2011,28(03):346.
[7]刘金花,徐吟亚,付波.低分子肝素钙对慢性阻塞性肺疾病急性加重期患者血栓前状态的影响[J].新乡医学院学报,2012,29(09):680.
[8]王 沁,郭建辉,梁 栋,等.健脾益肺口服液对慢性阻塞性肺疾病“肺脾气虚证”大鼠动脉血气的影响[J].新乡医学院学报,2014,31(11):896.[doi:10.7683/xxyxyxb.2014.11.00]
[9]朱木林1,袁云华1,邓 巍2,等.慢性阻塞性肺疾病合并外周骨骼肌功能障碍患者炎性因子和代谢水平及线粒体功能的变化[J].新乡医学院学报,2015,32(05):412.
[10]李 航,郭伟丽,安 珍,等.PM2.5对慢性阻塞性肺疾病影响研究进展[J].新乡医学院学报,2016,33(3):234.[doi:10.7683/xxyxyxb.2016.03.020]
 LI Hang,GUO Weili,AN Zhen,et al.Research progress on the effect of PM2.5 on chronic obstructive pulmonary disease[J].Journal of Xinxiang Medical University,2016,33(2):234.[doi:10.7683/xxyxyxb.2016.03.020]

更新日期/Last Update: 2022-02-05