[1]韩克丽,赵国安,朱 丽,等.微RNA调节心脏重构的病理生理机制研究进展[J].新乡医学院学报,2021,38(12):1200-1204.[doi:10.7683/xxyxyxb.2021.12.019]
点击复制

微RNA调节心脏重构的病理生理机制研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
38
期数:
2021年12
页码:
1200-1204
栏目:
综述
出版日期:
2021-12-05

文章信息/Info

作者:
韩克丽1赵国安123朱 丽1陈志刚123林 飞123
(1.新乡医学院心脏病诊疗中心, 河南 卫辉 453100;2.河南省心脏线粒体生物医学工程研究中心,河南 卫辉 453100;3.河南省心血管损伤与修复国际联合实验室,河南 卫辉 453100)
关键词:
微RNA心脏重构心力衰竭
分类号:
R541
DOI:
10.7683/xxyxyxb.2021.12.019
文献标志码:
A
摘要:
微RNA(miRNA)是来源于内源性染色体上的非编码RNA,通过与其目标信使RNA分子的3′端非编码区域互补,对基因进行转录后的表达调控,在细胞的增殖、分化及凋亡等生物学过程中发挥重要作用。大量临床和基础研究显示,miRNA通过调节心肌细胞的肥大、凋亡以及纤维化,参与心脏重构的进程,影响心力衰竭的生理病理过程。目前,如何高效逆转心脏重构,延缓心力衰竭的进展和降低心力衰竭患者病死率成为学者们的研究热点,鉴于此,本文就miRNA调节心脏重构的病理生理机制研究进展进行综述,以期为寻找逆转心力衰竭的生物标志物及治疗靶点提供思路与方法。

参考文献/References:

[1] DU X,PATEL A,ANDERSON C S,et al.Epidemiology of cardiovascular disease in China and opportunities for improvement:JACC international[J].J Am Coll Cardiol,2019,73(24):3135-3147.
[2] NGUYEN N,CANSECO D C,FENG X,et al.A calcineurin-Hoxb13 axis regulates growth mode of mammalian cardiomyocytes[J].Nature,2020,582(7811):1-6.
[3] LEI M M.In vivo elongation of thin filaments results in heart failure[J].PLoS One,2020,15(1):e0226138.
[4] GONZALEZ A,SCHELBERT E B,DIEZ J,et al.Myocardial interstitial fibrosis in heart failure:biological and translational perspectives[J].J Am Coll Cardiol,2018,71(15):1696-1706.
[5] MICHLEWSKI G P,CACERES J F.Post-transcriptional control of miRNA biogenesis[J].RNA,2018,25(1):068692.
[6] SALIMINEJAD K,KHORRAM KHORSHID H R,SOLEYMANI FARD S,et al.An overview of microRNAs:biology,functions,therapeutics,and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465.
[7] AKMAK H A,DEMIR M.MicroRNA and cardiovascular diseases[J].Balkan Med J,2020,37(2):60-71.
[8] REMSBURG C,KONRAD K,SAMPILO N F,et al.Analysis of microRNA functions[J].Methods Cell Biol,2019,151:323-334.
[9] HUANG C K,KAFERT-KASTING S,THUM T.Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease[J].Circ Res,2020,126(5):663-678.
[10] HUANG Y.The novel regulatory role of incRNA-miRNA-mRNA axis in cardiovascular diseases[J].J Cell Mol Med,2018,22(12):5768-5775.
[11] LIN F,ZHAO G,CHEN Z,et al.CircRNA miRNA association for coronary heart disease[J].Mol Med Rep,2019,19(4):2527-2536.
[12] 林飞,赵国安,陈志刚,等.急性心肌梗死circRNA-miRNA网络相关性及可能调控机制分析[J].中华医学杂志,2018,98(11):851-854.
[13] LU Y,THAVARAJAH T,GU W,et al.Impact of miRNA in atherosclerosis[J].Arterioscler Thromb Vasc Biol,2018,38(9):e159-e170.
[14] ZHOU S S,JIN J P,WANG J Q,et al.miRNA in cardiovascular diseases:potential biomarkers,therapeutic targets and challenges[J].Acta Pharmacol Sin,2018,39(7):1073-1084.
[15] ZHAO G.Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases[J].J Med Genet,2018,55(11):713-720.
[16] NAGY O,BARATH S,UJFALUSI A.The role of microRNAs in congenital heart disease[J].EJIFCC,2019,30:165-178.
[17] BAYES-GENIS A,LANFEAR D E,RONDE M,et al.Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients[J].Eur J Heart Fail,2018,20(1):67-75.
[18] NIE X,FAN J,LI H,et al.MiR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN[J].Mol Ther Nucleic Acids,2018,12:254-266.
[19] ZHANG M,JIANG Y,GUO X,et al.Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway[J].J Cell Mol Med,2019,23(11):7685-7698.
[20] IKEDA S,HE A,KONG S W,et al.MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes[J].Mol Cell Biol,2009,29(8):2193-2204.
[21] KOPECHEK J A,MCTIERNAN C F,CHEN X,et al.Ultrasound and microbubble-targeted delivery of a microRNA inhibitor to the heart suppresses cardiac hypertrophy and preserves cardiac function[J].Theranostics,2019,9(23):7088-7098.
[22] LV L,LI T,LI X,et al.The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214[J].Mol Ther Nucleic Acids,2018,10:387-397.
[23] SASSI Y,AVRAMOPOULOS P,RAMANUJAM D,et al.Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling[J].Nat Commun,2017,8(1):1614.
[24] HUANG C Y,PAI P Y,KUO C H,et al.p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure[J].Cell Death Dis,2017,8(8):e2990.
[25] WANG Q,YU X,DOU L,et al.MiR-154-5p functions as an important regulator of angiotensin II-mediated heart remodeling[J].Oxid Med Cell Longev,2019,2019:8768164.
[26] BERNARDO B C,NGUYEN S S,GAO X M,et al.Inhibition of miR-154 protects against cardiac dysfunction and fibrosis in a mouse model of pressure overload[J].Sci Rep,2016,6:22442.
[27] FENG B,CHEN S,GORDON A D,et al.MiR-146a mediates inflammatory changes and fibrosis in the heart in diabetes[J].J Mol Cell Cardiol,2017,105:70-76.
[28] CHIASSON V,TAKANO A P C,GULERIA R S,et al.Deficiency of microRNA miR-1954 promotes cardiac remodeling and fibrosis[J].J Am Heart Assoc,2019,8(21):e012880.
[29] PAN Z,SUN X,SHAN H,et al.MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway[J].Circulation,2012,126(7):840-850.
[30] ZHANG Y,WANG J H,ZHANG Y Y,et al.Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGF-β1 and miR-29 pathways[J].Sci Rep,2016,6:23010.
[31] LIU X,DENG Y,XU Y,et al.MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1[J].J Mol Cell Cardiol,2018,118:133-146.
[32] LI Z,SONG Y,LIU L,et al.MiR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J].Cell Death Differ,2017,24(7):1205-1213.
[33] ZOU M,WANG F,GAO R,et al.Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts[J].Sci Rep,2016,6:24747.
[34] HU J,HUANG C X,RAO P P,et al.MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation[J].Eur J Pharmacol,2019,857:172449.
[35] HOU W,ZHU X,LUI J,et al.Inhibition of miR-153 ameliorates ischemia/reperfusion-induced cardiomyocytes apoptosis by regulating Nrf2/HO-1 signaling in rats[J].Biomed Eng Online,2020,19(1):15.
[36] YANG Q H,YANG M,ZHANG L L,et al.The mechanism of miR-23a in regulating myocardial cell apoptosis through targeting FoxO3[J].Eur Rev Med Pharmacol Sci,2017,21(24):5789-5797.
[37] LAVINE K J,PIN A R,EPELMAN S,et al.The macrophage in cardiac homeostasis and disease:JACC macrophage in CVD series (Part 4)[J].J Am Coll Cardiol,2018,72(18):2213-2230.
[38] COUTO G,GALLET R,CAMBIER L,et al.Exosomal microRNA transfer into macrophages mediates cellular postconditioning[J].Circulation,2017,136(2):200-214.
[39] BEJERANO T,ETZIN S,ELYAGONl S,et al.Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction[J].Nano Lett,2018,18(9):5885-5891.
[40] KUMAR A A,KELLY D P,CHIRINOS J A.Mitochondrial dysfunction in heart failure with preserved ejection fraction[J].Circulation,2019,139(11):1435-1450.
[41] ZHOU B,TIANIAN R.Mitochondrial dysfunction in pathophysiology of heart failure[J].J Clin Invest,2018,128(9):3716-3726.
[42] HEGGERMONT W A,PAPAGEORGIOU A P,QUAEGEBEUR A,et al.Inhibition of microRNA-146a and overexpression of its target dihydrolipoyl succinyltransferase protect against pressure overload-induced cardiac hypertrophy and dysfunction[J].Circulation,2017,136(8):747-761.
[43] SUN W,ZHAO L,SONG X,et al.MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes[J].Cell Physiol Biochem,2017,43(1):383-394.
[44] LAHEY R,CARLEY A N,WANG X,et al.Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts[J].Circ Res,2018,122(6):836-845.
[45] WANG H,BEI Y,SHEN S,et al.MiR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2[J].J Mol Cell Cardiol,2016,94:43-53.
[46] DAS S,KOHR M,DUNKERLY-EYRING B,et al.Divergent effects of miR-181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets[J].J Am Heart Assoc,2017,6(3):e004694.
[47] AZZOUZI H,LEPTIDIS S,DIRKX E,et al,The hypoxia-inducible microRNA cluster miR-199a~214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation[J].Cell Metab,2013,18(3):341-354.
[48] SUN W,ZHAO L,SONG X,et al.MicroRNA-210 modulates the cellular energy metabolism shift during H2O2-induced oxidative stress by repressing ISCU in H9c2 cardiomyocytes[J].Cell Physiol Biochem,2017,43(1):383-394.
[49] GUAN X,WANG L,LIU Z,et al.MiR-106a promotes cardiac hypertrophy by targeting mitofusin 2[J].J Mol Cell Cardiol,2016,99:207-217.
[50] BLUMENSATT M,FAHLUUSCH P,HILGERS R,et al.Secretory products from epicardial adipose tissue from patients with type 2 diabetes impair mitochondrial β-oxidation in cardiomyocytes via activation of the cardiac renin-angiotensin system and induction of miR-208a[J].Basic Res Cardiol,2017,112(1):2.

相似文献/References:

[1]智佳佳,杜朝政,王 越,等.微RNA和信号通路在骨关节炎病理机制中的作用研究进展[J].新乡医学院学报,2021,38(10):982.[doi:10.7683/xxyxyxb.2021.10.017]
[2]杨 龙,刘春明,王正飞,等.银杏叶提取物对大鼠心肌缺血再灌注损伤的保护作用及机制[J].新乡医学院学报,2021,38(11):1011.[doi:10.7683/xxyxyxb.2021.11.003]
 YANG Long,LIU Chunming,WANG Zhengfei,et al.Protective role and mechnism of Ginkgo biloba extract on myocardial ischemia-reperfusion injury in rats[J].Journal of Xinxiang Medical University,2021,38(12):1011.[doi:10.7683/xxyxyxb.2021.11.003]
[3]梁文辉,朱会芳,王志慧,等.微RNA调控乳腺癌耐药性研究进展[J].新乡医学院学报,2021,38(6):597.[doi:10.7683/xxyxyxb.2021.06.022]
[4]张雪儿,郑 娜,梁紫君,等.微RNA在血管性认知障碍中的作用研究进展[J].新乡医学院学报,2021,38(9):897.[doi:10.7683/xxyxyxb.2021.09.022]
[5]石卓林,杨晓花,袁晓梅.特发性肺纤维化患者血清外泌体microRNA表达谱的变化及临床意义[J].新乡医学院学报,2022,39(5):481.[doi:10.7683/xxyxyxb.2022.05.016]
 SHI Zhuolin,YANG Xiaohua,YUAN Xiaomei.Changes and clinical significance of serum exosomal microRNA expression in patients with idiopathic pulmonary fibrosis[J].Journal of Xinxiang Medical University,2022,39(12):481.[doi:10.7683/xxyxyxb.2022.05.016]
[6]陆智豪,陈立民,王颖赞,等.外泌体微RNA治疗骨关节炎研究进展[J].新乡医学院学报,2023,40(2):187.[doi:10.7683/xxyxyxb.2023.02.017]
 LU Zhihao,CHEN Limin,WANG Yingzan,et al.Research progress of exosomal microRNA in the treatment of osteoarthritis[J].Journal of Xinxiang Medical University,2023,40(12):187.[doi:10.7683/xxyxyxb.2023.02.017]

更新日期/Last Update: 2021-12-05