[1]卢 娜,李 晓,刘冬玲,等.线粒体DNA氧化损伤在动脉粥样硬化发生、发展中的作用研究进展[J].新乡医学院学报,2021,38(3):201-206.[doi:10.7683/xxyxyxb.2021.03.001]
点击复制

线粒体DNA氧化损伤在动脉粥样硬化发生、发展中的作用研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
38
期数:
2021年3
页码:
201-206
栏目:
专题报告
出版日期:
2021-03-05

文章信息/Info

作者:
卢 娜李 晓刘冬玲王现伟
(新乡医学院基础医学院,河南省医用组织再生重点实验室,河南 新乡 453003)
关键词:
氧化损伤线粒体DNA动脉粥样硬化
分类号:
R364.3
DOI:
10.7683/xxyxyxb.2021.03.001
文献标志码:
A
摘要:
细胞受损可使线粒体(MT)产生过量活性氧(ROS),引起氧化应激水平升高,而ROS又可反作用于MT,造成线粒体DNA(mtDNA)损伤。动脉粥样硬化(AS)是一种以脂质累积、血管平滑肌细胞增生、细胞凋亡和局部炎症反应为特征的慢性炎症性疾病,氧化损伤是其发病机制之一。mtDNA氧化损伤可通过炎症反应、细胞凋亡和改变脂质代谢等途径促进AS的发生和发展。本文就mtDNA氧化损伤与AS的关系进行阐述,以期为AS的防治提供新的策略和靶点。

参考文献/References:

[1] SHEMIAKOVA T,IVANOVA E,GRECHKO A V,et al.Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis[J].Biomedicines,2020,8(6):166.
[2] 胡大一.把心血管病的一级预防落到实处:推动“以治病为中心”向“以人民健康为中心”转移[J].中华心血管病杂志,2020,48(12):995-997.
[3] DAN DUNN J,ALVAREZ L A,ZHANG X,et al.Reactive oxygen species and mitochondria:a nexus of cellular homeostasis[J].Redox Biol,2015,6:472-485.
[4] YU E P,BENNETT M R.The role of mitochondrial DNA damage in the development of atherosclerosis[J].Free Radic Biol Med,2016,100:223-230.
[5] VAN DER BLIEK A M,SEDENSKY M M,MORGAN P G.Cell biology of the mitochondrion[J].Genetics,2017,207(3):843-871.
[6] 李莉,于文功.线粒体DNA在肿瘤中的研究进展[J].青岛大学学报(医学版),2018,54(6):729-733.
[7] VENDITTI P,DI MEO S.The role of reactive oxygen species in the life cycle of the mitochondrion[J].Int J Mol Sci,2020,21(6):2173.
[8] YEH H L,KUO L T,SUNG F C,et al.Association between polymorphisms of antioxidant gene (MnSOD,CAT,and GPx1) and risk of coronary artery disease[J].Biomed Res Int,2018,2018:5086869.
[9] LUSHCHAK V I.Free radicals,reactive oxygen species,oxidative stress and its classification [J].Chem Biol Interact,2014,224:164-175.
[10] ZOROV D B,JUHASZOVA M,SOLLOTT S J.Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J].Physiol Rev,2014,94(3):909-950.
[11] BOYMAN L,COLEMAN A K,ZHAO G,et al.Dynamics of the mitochondrial permeability transition pore:transient and permanent opening events [J].Arch Biochem Biophys,2019,666:31-39.
[12] QUAN Y,XIN Y,TIAN G,et al.Mitochondrial ROS-modulated mtDNA:a potential target for cardiac aging[J].Oxid Med Cell Longev,2020,2020:9423593.
[13] SINGH G,PACHOURI U C,KHAIDEM D C,et al.Mitochondrial DNA damage and diseases [J].F1000Res,2015,4:176.
[14] DI MINNO A,TURNU L,PORRO B,et al.8-hydroxy-2-deo-xyguanosine levels and cardiovascular disease:a systematic review and meta-analysis of the literature[J].Antioxid Redox Signal,2016,24(10):548-555.
[15] 于珊珊.DNA氧化损伤修复反应体系及其对细胞寿命影响机制初探[D].济南:山东大学,2009.
[16] ANDERSON A P,LUO X,RUSSELL W,et al.Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity[J].Nucleic Acids Res,2020,48(2):817-829.
[17] NISSANKA N,MORAES C T.Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J].FEBS Lett,2018,592(5):728-742.
[18] GO X,SCHTTKER B.Reduction-oxidation pathways involved in cancer development:a systematic review of literature reviews[J].Oncotarget,2017,8(31):51888-51906.
[19] CHOI S,JOO H K,JEON B H.Dynamic regulation of APE1/Ref-1 as a therapeutic target protein[J].Chonnam Med J,2016,52(2):75-80.
[20] ASHAR F N,ZHANG Y,LONGCHAMPS R J,et al.Association of mitochondrial DNA copy number with cardiovascular disease[J].JAMA Cardiol,2017,2(11):1247-1255.
[21] FUKUOH A,CANNINO G,GERARDS M,et al.Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase[J].Mol Syst Biol,2014,10(6):734.
[22] HAHN A,ZURYN S.Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species[J].Antioxidants (Basel),2019,8(9):392.
[23] 达静静.胆固醇致人血管内皮细胞DNA损伤的分子机制[D].遵义:遵义医学院,2013.
[24] DAVIDSON S M,YELLON D M.Mitochondrial DNA damage,oxidative stress,and atherosclerosis:where there is smoke there is not always fire[J].Circulation,2013,128(7):681-683.
[25] DOCHERTY C K,CARSWELL A,FRIEL E,et al.Impaired mitochondrial respiration in human carotid plaque atherosclerosis:a potential role for Pink1 in vascular smooth muscle cell energetics [J].Atherosclerosis,2018,268:1-11.
[26] GRAY K,KUMAR S,FIGG N,et al.Effects of DNA damage in smooth muscle cells in atherosclerosis[J].Circ Res,2015 (116):816-826.
[27] WANG G Z,WANG G Z,RABINOVITCH P S,et al.Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages[J].Circ Res,2014,114(3):421-433.
[28] MARTINE W,DE MEYER G R,HERMAN A G,et al.Reactive oxygen species induce RNA damage in human atherosclerosis[J].Eur J Clin Invest,2004,34(5):323-327.
[29] MAHMOUDI M,GORENNE I,MERCER J,et al.Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells[J].Circ Res,2008,103(7):717-725.
[30] SINYOV V V,SAZONOVA M A,RYZHKOVA A I,et al.Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations[J].Vessel Plus,2017,1:145-150.
[31] BALLINGER S W,PATTERSON C,KNIGHT-LOZANO C A,et al.Mitochondrial integrity and function in atherogenesis[J].Circulation,2002,106(5):544-549.
[32] YU E P K,REINHOLD J,YU H,et al.Mitochondrial respiration is reduced in atherosclerosis,promoting necrotic core formation and reducing relative fibrous cap thickness[J].Arterioscler Thromb Vasc Biol,2017,37(12):2322-2332.
[33] PENG W,CAI G,XIA Y,et al.Mitochondrial dysfunction in atherosclerosis[J].DNA Cell Biol,2019,38(7):597-606.
[34] YU E P,BENNETT M R.Mitochondrial DNA damage and atherosclerosis[J].Trends Endocrinol Metab,2014,25(9):481-487.
[35] FORSSTRM S,JACKSON C B,CARROLL C J,et al.Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions[J].Cell Metab,2019,30(6):1040-1054.e7.
[36] TABARI F S,KARIMIAN A,PARSIAN H,et al.The roles of FGF21 in atherosclerosis pathogenesis[J].Rev Endocr Metab Disord,2019,20(1):103-114.
[37] ZHONG Z,LIANG S,SANCHEZ-LOPEZ E,et al.New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J].Nature,2018,560(7717):198-203.
[38] HOSEINI Z,SEPAHVAND F,RASHIDI B,et al.NLRP3 infla-mmasome:its regulation and involvement in atherosclerosis[J].J Cell Physiol,2018,233(3):2116-2132.
[39] ZENG Y,XU J,HUA Y Q,et al.MDM2 contributes to oxidized low-density lipoprotein-induced inflammation through modulation of mitochondrial damage in endothelial cells [J].Atherosclerosis,2020,305:1-9.
[40] DING Z,LIU S,WANG X,et al.LOX-1,mtDNA damage,and NLRP3 inflammasome activation in macrophages:implications in atherogenesis[J].Cardiovasc Res,2014,103(4):619- 628.
[41] HEID M E,KEYEL P A,KAMGA C,et al.Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation[J].J Immunol,2013,191(10):5230-5238.
[42] ROSHAN M H,TAMBO A,PACE N P.The role of TLR2,TLR4,and TLR9 in the pathogenesis of atherosclerosis[J].Int J Inflam,2016,2016:1532832.
[43] XIE L,HE S,KONG N,et al.Cpg-ODN,a TLR9 agonist,aggravates myocardial ischemia/ reperfusion injury by activation of TLR9-P38 MAPK signaling[J].Cell Physiol Biochem,2018,47(4):1389-1398.
[44] FUKUDA D,NISHIMOTO S,AINI K,et al.Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis[J].J Am Heart Assoc,2019,8(7):e010860.
[45] DING Z,LIU S,WANG X,et al.LOX-1,oxidant stress,mtDNA damage,autophagy,and immune response in atherosclerosis[J].Can J Physiol Pharmacol,2014,92(7):524-530.
[46] ZHANG Z,MENG P,HAN Y,et al.Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition[J].Immunity,2015,43(6):1137-1147.
[47] FINSTERER J.Atherosclerosis can be mitochondrial:a review[J].Cureus,2020,12(2):e6987.
[48] MENGEL-FROM J,THINGGAARD M,DALG A~RD C,et al.Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly[J].Human Genet,2014,133(9):114-1159.
[49] BACCARELLI A A,BYUN H M.Platelet mitochondrial DNA methylation:a potential new marker of cardiovascular disease[J].Clin Epigenet,2015,7(1):44.
[50] SUREZ-RIVERO J M,PASTOR-MALDONADO C J,DE LA MATA M,et al.Atherosclerosis and coenzyme Q10[J].Int J Mol Sci,2019,20(20):5195.
[51] MERCER J R,YU E,FIGG N,et al.The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice[J].Free Radic Biol Med,2012,52(5):841-849.
[52] JIANG L,WANG J,JIANG J,et al.Sonodynamic therapy in athe-rosclerosis by curcumin nanosuspensions:preparation design,efficacy evaluation,and mechanisms analysis[J].Eur J Pharm Biopharm,2020,146:101-110.
[53] POZNYAK A V,GRECHKO A V,OREKHOVA V A,et al.Oxidative stress and antioxidants in atherosclerosis development and treatment[J].Biology (Basel),2020,9(3):60.
[54] NELSON K M,DAHLIN J L,BISSON J,et al.The essential medicinal chemistry of curcumin[J].J Med Chem,2017,60(5):1620-1637.
[55] 沈云辉,陈长勋.抗氧化应激研究进展[J].中成药,2019,41(11):2715-2719.
[56] 杨宝峰,陈建国.药理学[M].9版.北京:人民卫生出版社,2018:248-249.
[57] 曾彦.动脉粥样硬化性心血管疾病抗氧化应激治疗的新启示[J].中国卒中杂志,2017,12(1):85-88.

相似文献/References:

[1]赵颖丹,张天嵩,马 骏,等.细颗粒物2.5在肾小管上皮细胞氧化损伤中的作用及其调控机制[J].新乡医学院学报,2020,37(12):1118.[doi:10.7683/xxyxyxb.2020.12.004]
 ZHAO Yingdan,ZHANG Tiansong,MA Jun,et al.Role of particulate matter 2.5 in oxidative damage of renal tubular epithelial cells and its regulatory mechanism[J].Journal of Xinxiang Medical University,2020,37(3):1118.[doi:10.7683/xxyxyxb.2020.12.004]
[2]程 莹,张利彬,丁延峰,等.P2X7受体阻断剂亮蓝G对氧化应激所致红细胞氧化损伤的保护机制[J].新乡医学院学报,2016,33(6):462.[doi:10.7683/xxyxyxb.2016.06.004]
 CHENG Ying,ZHANG Li-bin,DING Yan-feng,et al.Protection mechanism of P2X7 receptor antagonist brilliant blue G to oxidative damage of erythrocyte[J].Journal of Xinxiang Medical University,2016,33(3):462.[doi:10.7683/xxyxyxb.2016.06.004]
[3]耿卢婧,孙智欣,李俞辰,等.温度对过氧化氢抑制前成骨细胞MC3T3-E1细胞增殖和成骨分化的影响[J].新乡医学院学报,2024,(2):109.[doi:10.7683/xxyxyxb.2024.02.002]
 GENG Lujing,SUN Zhixin,LI Yuchen,et al.Effect of temperature on the inhibitory effect induced by hydrogen peroxide on cell proliferation and osteogenic differentiation in preosteoblast MC3T3-E1 cells[J].Journal of Xinxiang Medical University,2024,(3):109.[doi:10.7683/xxyxyxb.2024.02.002]

更新日期/Last Update: 2021-03-05