[1]管丽红,贾紫森,林俊堂.规律成簇间隔短回文重复-相关核酸内切酶9技术在基因组编辑和基因转录调控中的应用[J].新乡医学院学报,2021,38(1):001-5.[doi:10.7683/xxyxyxb.2021.01.001]
点击复制

规律成簇间隔短回文重复-相关核酸内切酶9技术在基因组编辑和基因转录调控中的应用
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
38
期数:
2021年1
页码:
001-5
栏目:
专家论坛
出版日期:
2021-01-05

文章信息/Info

作者:
管丽红12贾紫森12林俊堂123
(1.新乡医学院生命科学技术学院,河南省干细胞医学国际联合实验室,河南省干细胞与生物治疗技术研究中心,河南 新乡 453003;2.河南省医用组织再生重点实验室,河南 新乡 453003;3.新乡医学院医学工程学院,河南 新乡 453003)
关键词:
CRISPR-Cas9技术基因敲除基因治疗CRISPR干扰CRISPR激活
分类号:
Q789
DOI:
10.7683/xxyxyxb.2021.01.001
文献标志码:
A
摘要:
规律成簇间隔短回文重复(CRISPR)及CRISPR相关核酸内切酶(Cas)系统是古生菌和细菌中一类重要的获得性免疫系统,可有效抵御噬菌体等外源遗传物质的侵袭、感染。近年来,CRISPR-Cas9系统被发展为一种由RNA指导核酸内切酶的基因编辑技术。本文就该技术在基因组编辑及基因转录调控中的应用进行综述。

参考文献/References:

[1] HORVATH P,BARRANGOU R.CRISPR/Cas,the immune system of bacteria and archaea[J].Science,2010,327(5962):167-170.
[2] HSU P D,LANDER E S,ZHANG F.Development and applications of CRISPR-Cas9 for genome engineering[J].Cell,2014,157(6):1262-1278.
[3] HEYER W D,EHMSEN K T,LIU J.Regulation of homologous recombination in eukaryotes[J].Annu Rev Genet,2010,44,113-139.
[4] LIEBER M R,GU J,LU H,et al.Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans[J].Subcell Biochem,2010,50:279-296.
[5] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
[6] JIANG W,ZHOU H,BI H,et al.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J].Nucleic Acids Res,2013,41(20):e188.
[7] YU Z,REN M,WANG Z,et al.Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila[J].Genetics,2013,195(1):289-291.
[8] JIANG W,BIKARD D,COX D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol,2013,31(3):233-239.
[9] WANG X,ZHOU J,CAO C,et al.Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knocking after rapid selection of highly active sgRNAs in pigs[J].Sci Rep,2015,5:13348.
[10] HWANG W Y,FU Y F,REYON D,et al.Efficient genome editing in zebrafish using a CRISPR-Cas system[J].Nat Biotechnol,2013,31(3):227-229.
[11] NAKAYAMA T,FISH M B,FISHER M,et al.Simple and efficient CRISPR/Cas9- mediated targeted mutagenesis in Xenopus tropicalis[J].Genesis,2013,51(12):835-843.
[12] LI D,QIU Z,SHAO Y,et al.Heritable gene targeting in the mouse and rat using a CRISPR-Cas system[J].Nat Biotechnol,2013,31(8):681-683.
[13] NIU Y,SHEN B,CUI Y,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014,156(4):836-843.
[14] LIANG P,XU Y,ZHANG X,et al.CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J].Protein Cell,2015,6(5):363-372.
[15] SHINMYO Y,TANAKA S,TSUNODA S,et al.CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation[J].Sci Rep,2016,6:20611.
[16] GANDHI S,PIACENTINO M L,VIECELI F M,et al.Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo[J].Dev Biol,2017,432(1):86-97.
[17] ROH J I,LEE J,PARK S U,et al.CRISPR-Cas9-mediated gene-ration of obese and diabetic mouse models[J].Exp Anim,2018,67(2):229-237.
[18] RASYS A M,PARK S,BALL R E,et al.CRISPR-Cas9 gene editing in lizards through microinjection of unfertilized oocytes[J].Cell Rep,2019,28(9):2288-2292 e3.
[19] BYAMBAA S,UOSAKI H,HARA H,et al.Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9[J].Exp Anim,2020,69(2):189-198.
[20] WU Y,LIANG D,WANG Y,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J].Cell Stem Cell,2013,13(6):659-662.
[21] YIN H,XUE W,CHEN S,et al.Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J].Nat Biotechnol,2014,32(6):551-553.
[22] SCHUMANN K,LIN S,BOYER E,et al.Generation of knock-in primary human T cells using Cas9 ribonucleoproteins[J].Proc Natl Acad Sci U S A,2015,112(33):10437-10442.
[23] YANG Y,WANG L,BELL P,et al.A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice[J].Nat Biotechnol,2016,34(3):334-338.
[24] GUAN Y,MA Y,LI Q,et al.CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse[J].EMBO Mol Med,2016,8(5):477-488.
[25] KOLLI N,LU M,MAITI P,et al.CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of Huntington′s disease[J].Int J Mol Sci,2017,18(4):754.
[26] YANG S,CHANG R,YANG H,et al.CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington′s disease[J].J Clin Invest,2017,127(7):2719- 2724.
[27] GYRGY B,LV C,ZABOROWSKI M P,et al.CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer′s disease[J].Mol Ther Nucleic Acids,2018,11:429-440.
[28] EKMAN F K,OJALA D S,ADIL M M,et al.CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington′s disease mouse model[J].Mol Ther Nucleic Acids,2019,17:829-839.
[29] PINZON-ARTEAGA C,SNYDER M D,LAZZAROTTO C R,et al.Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9[J].Sci Rep,2020,10(1):7411.
[30] QI L S,LARSON M H,GILBERT L A,et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J].Cell,2013,152(5):1173-1183.
[31] LARSON M H,GILBERT L A,WANG X,et al.CRISPR inter-ference (CRISPRi) for sequence-specific control of gene expre-ssion[J].Nat Protoc,2013,8(11):2180-2196.
[32] BIKARD D,JIANG W,SAMAI P,et al.Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J].Nucleic Acids Res,2013,41(15):7429-7437.
[33] ZHAO Y,DAI Z,LIANG Y,et al.Sequence-specific inhibition of microRNA via CRISPR/ CRISPRi system[J].Sci Rep,2014,4:3943.
[34] SUN Y,ORAVECZ-WILSON K,MATHEWSON N,et al.Mature T cell responses are controlled by microRNA-142[J].J Clin Invest,2015,125(7):2825-2840.
[35] HEMAN-ACKAH S M,BASSETT A R,WOOD M J.Precision modulation of neurodegenerative disease-related gene expression in human iPSC-derived neurons[J].Sci Rep,2016,6:28420.
[36] LIU S J,HORLBECK M A,CHO S W,et al.CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J].Science,2017,355(6320):aah7111.
[37] YOSHIDA M,YOKOTA E,SAKUMA T,et al.Development of an integrated CRISPRi targeting ΔNp63 for treatment of squamous cell carcinoma[J].Oncotarget,2018,9(49):29220-29232.
[38] WANG X,MA S,LIU Y,et al.Transcriptional repression of endo-genous genes in BmE cells using CRISPRi system[J].Insect Biochem Mol Biol,2019,111:103172.
[39] HAZELBAKER D Z,BECCARD A,ANGELINI G,et al.A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells[J].Sci Rep,2020,10(1):635.
[40] MAEDER M L,LINDER S J,CASCIO V M,et al.CRISPR RNA-guided activation of endogenous human genes[J].Nat Methods,2013,10(10):977-979.
[41] GAO X,TSANG J C,GABA F,et al.Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers[J].Nucleic Acids Res,2014,42(20):e155.
[42] NIHONGAKI Y,YAMAMOTO S,KAWANO F,et al.CRISPR-Cas9-based photoactivatable transcription system[J].Chem Biol,2015,22(2):169-174.
[43] POLSTEIN L R,GERSBACH C A.A light-inducible CRISPR-Cas9 system for control of endogenous gene activation[J].Nat Chem Biol,2015,11(3):198-200.
[44] ZETSCHE B,VOLZ S E,ZHANG F.A split-Cas9 architecture for inducible genome editing and transcription modulation[J].Nat Biotechnol,2015,33(2):139-142.
[45] LI S,ZHANG A,XUE H,et al.One-step piggyBac transposon-based CRISPR/Cas9 activation of multiple genes[J].Mol Ther Nucleic Acids,2017,8:64-76.
[46] PUTRI R R,CHEN L.Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system[J].Gene,2018,677:273-279.
[47] MATHARU N,RATTANASOPHA S,TAMURA S,et al.CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency[J].Science,2019,363(6424):eaau0629.
[48] COLASANTE G,QIU Y,MASSIMINO L,et al.In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy[J].Brain,2020,143(3):891-905.
[49] ZHANG F,WEN Y,GUO X.CRISPR/Cas9 for genome editing:progress,implications and challenges[J].Hum Mol Genet,2014,23(R1):R40-46.
[50] FU Y,FODEN J A,KHAYTER C,et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9):822-826.
[51] NAITO Y,HINO K,BONO H,et al.CRISPRdirect:software for designing CRISPR/Cas guide RNA with reduced off-target sites[J].Bioinformatics,2015,31(7):1120-1123.
[52] SLAYMAKER I M,GAO L,ZETSCHE B,et al.Rationally engineered Cas9 nucleases with improved specificity[J].Science,2016,351(6268):84-88.
[53] SHEN C C,HSU M N,CHANG C W,et al.Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation[J].Nucleic Acids Res,2019,47(3):e13.

相似文献/References:

[1]赵隽,温松,于法明,等.含Sushi重复蛋白X连锁2基因敲除对肺腺癌A549细胞生物学特性的影响[J].新乡医学院学报,2022,39(10):901.[doi:10.7683/xxyxyxb.2022.10.001]
 ZHAO Jun,WEN Song,YU Faming,et al.Effect of Sushi repeat containing protein,X-linked 2 gene knockout on the biological characteristics of lung adenocarcinoma A549 cells[J].Journal of Xinxiang Medical University,2022,39(1):901.[doi:10.7683/xxyxyxb.2022.10.001]

更新日期/Last Update: 2021-01-05