[1]王 洁,谢国旗,倪 军,等.2型糖尿病与肠道菌群失衡关系研究进展[J].新乡医学院学报,2020,37(6):597-600.[doi:10.7683/xxyxyxb.2020.06.022]
点击复制

2型糖尿病与肠道菌群失衡关系研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
37
期数:
2020年6
页码:
597-600
栏目:
综述
出版日期:
2020-06-05

文章信息/Info

作者:
王 洁1谢国旗2倪 军2张 静2李庆垚3
(1.新乡医学院,河南 新乡 453003;2.中国人民解放军第八十三集团军医院内分泌科,河南 新乡 453003;3.周口市中心医院儿科,河南 周口 466000)
关键词:
2型糖尿病肠道菌群发病机制
分类号:
R587.1
DOI:
10.7683/xxyxyxb.2020.06.022
文献标志码:
A
摘要:
2型糖尿病(T2DM)是一种难治的慢性代谢性疾病,其发病机制目前尚未完全明确。肠道菌群对维持人类健康具有重大意义,其一旦失衡将会导致各种免疫疾病的发生、发展。研究表明,肠道菌群紊乱与T2DM的发生、发展密切相关。目前,有关肠道菌群失衡与T2DM的病理学机制不断被揭示。本文就国内外关于T2DM与肠道菌群失衡关系的研究进展做一综述,为从肠道菌群调节方面治疗T2DM提供理论依据和文献参考。

参考文献/References:

[1] SAEEDI P,SALPEA P,KARURANGA S,et al.Mortality attributable to diabetes in 20-79 years old adults,2019 estimates:results from the international diabetes federation diabetes atlas,9 edition[J].Diabetes Res Clin Pract,2020,21(10):80-86.
[2] CHOI J B,YOO J M,LEE Y J,et al.Effect of the sodium-glucose cotransporter 2 inhibitor,dapagliflozin,on genitourinary infection in an animal model of type 2 diabetes[J].Int Neurourol J,2020,24(1):21-28.
[3] WONGKRASANT P,PONGKORPSAKOL P,CHITWATTANANONT S,et al.Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of inos and cleaved caspase-3 expression[J].J Pharmacol Sci,2020,143(2):65-73.
[4] YAP Y A,MARIN~O E.Dietary SCFAs immunotherapy:reshaping the gut microbiota in diabetes[J].Adv Exp Med Biol,2020,10(7):10-15.
[5] LUU M,VISEKRUNA A.Short-chain fatty acids:bacterial messengers modulating the immunometabolism of T cells[J].Eur J Immunol,2019,49(9):842-848.
[6] YORK A.Your microbiome is what you eat[J].Nat Rev Microbiol,2019,17(12):720-721.
[7] METZLER-ZEBELI B U,CANIBE N,MONTAGNE L,et al.Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs[J].Animal,2019,13(1):64-73.
[8] VALLIANOU N G,STRATIGOU T.Microbiome and diabetes:where are we now[J].Diabetes Res Clin Pract,2018,14(6):111-118.
[9] 张洪阳,韩新生,徐建可,等.血清胱抑素C、尿微量白蛋白与老年急性脑梗死合并2型糖尿病患者病情严重程度及血糖变化的相关性[J].新乡医学院学报,2019,36(5):448-451.
[10] ZHU L,SHA L,LI K,et al.Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats[J].Lipids Health Dis,2020,19(1):17-20.
[11] HE D,HUANG J H,ZHANG Z Y,et al.A network pharmacology-based strategy for predicting active ingredients and potential targets of Liu Wei Di Huang pill in treating type 2 diabetes mellitus[J].Drug Des Devel Ther,2019,13(12):3989-4005.
[12] WANG Y,ZHANG K,QI X,et al.Effects of propofol on LC3II and mTOR/p-mTOR expression during ischemia-reperfusion myocardium injury in rats with type 2 diabetes mellitus[J].Exp Ther Med,2020,19(4):2441-2448.
[13] KIERNAN K,MACIVER N J.A novel mechanism for Th17 inflammation in human type 2 diabetes mellitus[J].Trends Endocrinol Metab,2020,31(1):1-2.
[14] MAHABADI-ASHTIYANI E,SHEIKH V,BORZOUEI S,et al.The increased T helper cells proliferation and inflammatory responses in patients with type 2 diabetes mellitus is suppressed by sitagliptin and vitamin D3 in vitro[J].Inflamm Res,2019,68(10):857-866.
[15] WANG X,YANG L,CHENG Y,et al.Down regulation of T-Cell transcription factors in adult latent autoimmune diabetes with high-titer glutamic acid decaroxylase antibody[J].Diabetes Ther,2019,10(3):917-927.
[16] GALSTYAN K O,NEDOSUGOVA L V,MARTIROSIAN N S,et al.Modification of tumor necrosis factor-α and C-C Motif chemokine ligand 18 secretion by monocytes derived from patients with diabetic foot syndrome[J].Biology,2019,9(1):1-3.
[17] WONG U,CROSS R K.Expert opinion on interleukin-12/23 and interleukin-23 antagonists as potential therapeutic options for the treatment of inflammatory bowel disease[J].Expert Opin Investig Drugs,2019,28(5):473-479.
[18] LSSIGER-HERFURTH A,PONTAROLLO G,GRILL A.The gut microbiota in cardiovascular disease and arterial thrombosis[J].Microorganisms,2019,7(12):691.
[19] CHASSAING B,GEWIRTZ A T.Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency[J].PLoS One,2018,13(4):3-10.
[20] DELGADO G E,KRAMER B K,SCHARNAGL H,et al.Bile Acids in patients with uncontrolled type 2 diabetes mellitus-the effect of two days of oatmeal treatment[J].Exp Clin Endocrinol Diabetes,2020,73(30):1055-1069.
[21] JIA W,XIE G,JIA W.Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J].Nat Rev Gastroenterol Hepatol,2018,15(2):111-128.
[22] GADALETA R M,GARCIA-IRIGOYEN O,CARIELLO M,et al.Fibroblast growth factor 19 modulates intestinal microbiota and inflammation in presence of farnesoid X receptor[J].EBioMedicine,2020,54(10):19-27.
[23] DINAN T G,CRYAN J F.The microbiome-gut-brain axis in health and disease[J].Gastroenterol Clin North Am,2017,46(1):77-89.
[24] HOLLY J M P,BIERNACKA K,PERKS C M.The neglected insulin:IGF-II,a metabolic regulator with implications for diabetes,obesity,and cancer[J].Cells,2019,8(10):7-12.
[25] KAISANLAHTI A,GLUMOFF T.Browning of white fat:agents and implications for beige adipose tissue to type 2 diabetes[J].J Physiol Biochem,2019,75(1):1-10.
[26] LOH K,SHI Y C,BENSELLAM M,et al.Y1 receptor deficiency in β-cells leads to increased adiposity and impaired glucose metabolism[J].Sci Rep,2018,8(1):28-35.
[27] YANG X,CHENG X,TANG Y,et al.Bacterial endotoxin activates the coagulation cascade through gasdermin D-Dependent phosphatidylserine exposure[J].Immunity,2019,51(6):983-996.
[28] CANI P D,POSSEMIERS S, WIELE T V D,et al.Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J].Gut,2009,58(8):1091-1103.
[29] LU Y C,YEH W C,OHASHI P S.LPS/TLR4 signal transduction pathway[J].Cytokine,2008,42(2):145-151.
[30] PAN Z K.Toll-like receptors and TLR-mediated signaling:more questions than answers[J].Am J Physiol Lung Cell Mol Physiol,2004,286(5):918-928.
[31] TAKAGURI A.Elucidation of a new mechanism of onset of insulin resistance:effects of statins and tumor necrosis factor-α on insulin signal transduction[J].Yakugaku Zasshi,2018,138(11):1329-1334.
[32] DELZENNE N M,CANI P D.Nutritional modulation of gut microbiota in the context of obesity and insulin resistance:potential interest of prebiotics[J].Int Dairy J,2010,20(4):277-280.
[33] CHEPURNY O G,MATSOUKAS M T,LIAPAKIS G,et al.Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput fret assays for cAMP[J].J Biol Chem,2019,294(10):3514-3531.
[34] LAFFERTY R A,FLATT P R,IRWIN N.Emerging therapeutic potential for peptide YY for obesity-diabetes[J].Peptides,2018,100(24):269-274.
[35] CHAIT A,DEN HARTIGH L J.Adipose tissue distribution,inflammation and its metabolic consequences,including diabetes and cardiovascular disease[J].Front Cardiovasc Med,2020,7(15):21-22.
[36] KJAERGAARD M,SALINAS C,REHFELD J F,et al.PYY(3-36) and exendin-4 reduce food intake and activate neuronal circuits in a synergistic manner in mice[J].Neuropeptides,2019,73(2):89-95.
[37] YIN W L,BAIN S C,MIN T.The effect of glucagon-like peptide-1 receptor agonists on renal outcomes in type 2 diabetes[J].Diabetes Ther,2020,11(4):835-844.
[38] ADAMS J M,PEI H,SANDOVAL D A,et al.Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing gutamatergic neurons[J].Diabetes,2018,67(8):1538-1548.
[39] LUO Y,YANG P,LI Z,et al.Liraglutide improves non-alcoholic fatty liver disease in diabetic mice by modulating inflammatory signaling pathways[J].Drug Des Develo Ther,2019,13(5):4065-4074.
[40] MCDONALD B D,JABRI B,BENDELAC A.Diverse developmental pathways of intestinal intraepithelial lymphocytes[J].Nat Rev Immunol,2018,18(8):514-525.
[41] HE S,KAHLES F,RATTIK S,et al.Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease[J].Nature,2019,566(7742):115-119.
[42] NIHEI N,OKAMOTO H,FURUNE T,et al.Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice[J].Biofactors,2018,342(45):231-236.
[43] PETROVSKY N,SILVA D.The power of an integrated informatic and molecular approach to type 1 diabetes research[J].Ann N Y Acad Sci,2004,1037(237):216-224.
[44] TAN J,MCKENZIE C,POTAMITIS M,et al.The role of short-chain fatty acids in health and disease[J].Adv Immunol,2014,121(235):91-119.
[45] CANFORA E E,BEEK C M,JOCKEN J W E,et al.Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men:a randomized crossover trial[J].Sci Rep,2017,7(1):23-28.
[46] YARIBEYGI H,SATHYAPALAN T,ATKIN S L.Molecular mechanisms linking oxidative stress and diabetes ellitus[J].Oxid Med Cell Longev,2020,27(2):736-750.
[47] ZHANG H X,YANG Y L,WANG Y Q,et al.Renal-protective effect of thalidomide in streptozotocin-induced diabetic rats through anti-inflammatory pathway[J].Drug Des Devel Ther,2018,12(4):89-98.
[48] MA Y F,YOU X Y,MAI G Q,et al.A human gut phage catalog correlates the gut phageome with type 2 diabetes[J].Microbiome,2018,6(1):24-26.
[49] ZHAO L,WANG B H,WANG L M,et al.Design,screening and biological evaluation of novel fatty acid chain-modified oxyntomodulin-based derivatives with prolonged glucose-lowering ability and potent anti-obesity effects[J].Org Biomol Chem,2019,17(33):7760-7771.
[50] ZHONG X,CHEN Z,CHEN Q,et al.Novel site-specific fatty chain-modified GLP-1 receptor agonist with potent antidiabetic effects[J].Molecules,2019,24(4):776-779.

相似文献/References:

[1]翁孝刚.2型糖尿病与胰岛B一细胞功能[J].新乡医学院学报,2002,19(03):231.
[2]汪裕荣.血脂康联合小剂量阿司匹林治疗2型糖尿病并高脂血症的长期疗效观察[J].新乡医学院学报,2002,19(05):391.
[3]型糖尿病合并高血压的胰岛素敏感性探讨.2型糖尿病合并高血压的胰岛素敏感性探讨[J].新乡医学院学报,2003,20(02):124.
[4]何伟玺.冠心病与2型糖尿病患者心率变异性对比分析[J].新乡医学院学报,2003,20(04):282.
[5]李万森,毛向莹,邱培勇.2型糖尿病合并脑梗死50例临床分析[J].新乡医学院学报,2003,20(05):353.
[6]殷国田,崔瑞花.益津降糖胶囊治疗2型糖尿病42例[J].新乡医学院学报,2003,20(05):372.
[7]新乡市第二人民医院内分泌科 河南新乡.依那普利对2型糖尿病合并高血压患者血压及胰岛素敏感性指数的影响[J].新乡医学院学报,2005,22(03):267.
[8]蒋铁桥,张群,杨刚毅,等.短期胰岛素泵强化治疗对初诊2型糖尿病患者β细胞功能的影响[J].新乡医学院学报,2010,27(04):000.
[9]王润之,黄艳群.LPIN1基因的研究进展[J].新乡医学院学报,2010,27(04):413.
[10]姥勇,屈阳,朱旅云,等.脂联素与2型糖尿病血管病变的关系[J].新乡医学院学报,2011,28(01):089.

更新日期/Last Update: 2020-06-05