[1]王 婷,于远望.心力衰竭相关信号通路研究进展[J].新乡医学院学报,2019,36(10):986-989.[doi:10.7683/xxyxyxb.2019.10.020]
点击复制

心力衰竭相关信号通路研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
36
期数:
2019年10
页码:
986-989
栏目:
综述
出版日期:
2019-10-05

文章信息/Info

作者:
王 婷于远望
(陕西中医药大学基础医学院生理学教研室,陕西 咸阳 712046)
关键词:
心力衰竭信号通路研究进展
分类号:
R541.6
DOI:
10.7683/xxyxyxb.2019.10.020
文献标志码:
A
摘要:
心力衰竭是心血管系统疾病的终末阶段,已成为世界范围内最常见的慢性疾病,严重影响患者的日常生活,早期防治对于改善患者的预后极其重要。本文对瞬时受体电位香草酸1型信号通路、蛋白酪氨酸激酶2/信号转导和转录激活因子3信号传导通路、环磷鸟嘌呤核苷(cGMP)-cGMP依赖性蛋白激酶G信号通路、动力相关蛋白1信号通路及去乙酰化酶1/腺苷一磷酸激活的蛋白激酶信号通路在心力衰竭发生过程中作用的最新研究进行综述,以期为临床防治心力衰竭提供新的思路。

参考文献/References:

[1] BUI A L,HORWICH T B,FONAROW G C.Epidemiology and risk profile of heart failure[J].Nat Rev Cardiol,2011,8(1):30-41.
[2] COOK C,COLE G,ASARIA P,et al.The annual global economic burden of heart failure[J].Int J Cardiol,2014,171(3):368-376.
[3] HORTON J S,SHIRAISHI T,ALFULAIJ N,et al.TRPV1 is a com-ponent of the atrial natriuretic signaling complex,and using orally delivered antagonists,presents a valid therapeutic target in the longitudinal reversal and treatment of cardiac hypertrophy and heart failure[J].Channels (Austin),2019,13(1):1-16.
[4] GROSSMAN W,JONES D,MCLAURIN L P.Wall stress and patt-erns of hypertrophy in the human left ventricle[J].J Clin Invest,1975,56(1):56-64.
[5] ALFULAIJ N,MEINERS F,MICHALEK J,et al.Cannabinoids,the heart of the matter[J].J Am Heart Assoc,2018,7(14):e009-e099.
[6] FERREIRAL G B,FARIA R X.TRPing on the pore phenomenon:what do we know about transient receptor potential ion channel-related pore dilation up to now[J].J Bioenerg Biomembr,2016,48(1):1-12.
[7] SAMWAYS D S,TOMKIEWICZ E,LANGEVIN O M,et al.Meas-urement of relative Ca2+,permeability during sustained activation of TRPV1 receptors[J].Pflügers Arch,2016,468(2):201-211.
[8] ANDREI S R,SINHAROY P,BRATZ I N,et al.TRPA1 is fun-ctionally co-expressed with TRPV1 in cardiac muscle:co-localization at z-discs,costameres and intercalated discs[J].Channels (Austin),2016,10(5):395-409.
[9] ZHONG B,RUBINSTEIN J,MA S.Genetic ablation of TRPV1 exacerbates pressure overload-induced cardiac hypertrophy[J].Biomed Pharmacother,2018,99:261-270.
[10] HURT C M,LU Y,STARY C M,et al.Transient receptor potential vanilloid 1 regulates mitochondrial membrane potential and myocardial reperfusion injury[J].J Am Heart Assoc,2016,5(9):e003774.
[11] SUN Z,HAN J,ZHAO W,et al.TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction[J].Int J Mol Sci,2014,15(10):18362-18380.
[12] ZHONG B,WANG D H.TRPV1 gene knockout impairs pre-conditioning protection against myocardial injury in isolated perfused hearts in mice[J].Am J Physiol Heart Circ Physiol,2007,293(3):H1791-H1798.
[13] SHEN-ORR S S,FURMAN D,KIDDB A,et al.Defective sig-naling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans[J].Cell Syst,2016,3(4):374-384.
[14] DE S,MANNA A,KUNDU S,et al.Allylpyrocatechol attenuates collagen-induced arthritis via attenuation of oxidative stress secondary to modulation of the MAPK,JAK/STAT,and Nrf2/HO-1 Pathways[J].J Pharmacol Exp Ther,2017,360(2):249-259.
[15] KIM H C,KIM E,BAE J I,et al.Sevoflurane postconditioning reduces apoptosis by activating the JAK-STAT pathway after transient global cerebral ischemia in rats[J].J Neurosurg Anesthesiol,2017,29(1):37-45.
[16] LIU S,YANG Y,SONG Y Q,et al.Protective effects of N(2)L alanyl L glutamine mediated by the JAK2/STAT3 signaling pathway on myocardial ischemia reperfusion[J].Mol Med Rep,2018,17(4):5102-5108.
[17] BECKLES D L,MASCARENO E,SIDDIQUI M A Q.Inhibition of Jak2 phosphorylation attenuates pressure overload cardiac hypertrophy[J].Vascul Pharmacol,2006,45(6):350-357.
[18] YANG X,GAO X,DU B,et al.Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB,JAK2/STAT3,and MAPK signaling pathways[J].J Ethnopharmacol,2018,225:234-243.
[19] CHEN J,ZHANG W,XU Q,et al.Ang-(1-7) protects HUVECs from high glucose-induced injury and inflammation via inhibition of the JAK2/STAT3 pathway[J].Int J Mol Med,2018,41(5):2865-2878.
[20] YU Q,ZENG K W,MA X L,et al.Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway[J].Chin J Nat Med,2017,15(10):751-757.
[21] LI H,MANYI R,BING R,et al.TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via JAK2/STAT3 signalling pathway[J].J Cell Mol Med,2018,22:4344-4353.
[22] LINGYAN Y,LIN Q,YONG Y,et al.Heat-shock transcription factor 1 is critically involved in the ischaemia-induced cardiac hypertrophy via JAK2/STAT3 pathway[J].J Cell Mol Med,2018,22(9):4292-4303.
[23] PERSOON S,PAULUS M,HIRT S,et al.Cardiac unloading by LVAD support differentially influences components of the cGMP-PKG signaling pathway in ischemic and dilated cardiomyopathy[J].Heart Vessels,2018,33(8):948-957.
[24] MATYAS C,NEMETH B T,OLAH A,et al.The soluble guan-ylate cyclase activator cinaciguat prevents cardiac dysfunction in a rat model of type-1 diabetes mellitus[J].Cardiovasc Diabetol,2015,14:145.
[25] SHI Z,FU F,YU L,et al.Vasonatrin peptide attenuates myoc-ardial ischemia/reperfusion injury in diabetic rats and underlying mechanisms[J].Am J Physiol Heart Circ Physiol,2015,308(4):H281-H290.
[26] YU L M,DI W C,DONG X,et al.Melatonin protects diabetic he-art against ischemia-reperfusion injury,role of membrane receptor-dependent cGMP-PKG activation[J].Biochim Biophys Acta Mol Basis Dis,2018,1864(2):563-578.
[27] WEI Q,ZHU T,XIAO X,et al.Dioscin attenuates myocardial da-mages in diabetic rats maybe by regulating NO-sGC-cGMP-PKG pathway[J].Ann Clin Lab Sci,2019,49(1):97-104.
[28] XUE M,LI T,WANG Y,et al.Empagliflozin prevents cardi-omy-opathy via sGC-cGMP-PKG pathway in type 2 diabetes mice[J].Clin Sci(Lond),2019,133(15):1705-1720.
[29] PARK M,SANDNER P,KRIEG T.cGMP at the centre of atte-ntion:emerging strategies for activating the cardioprotective PKG pathway[J].Basic Res Cardiol,2018,113(4):24.
[30] LEE D I,ZHU G,SASAKI T,et al.Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease[J].Nature,2015,519(7544):472-476.
[31] NISHIMURA A,SHIMAUCHI T,TANAKA T,et al.Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence[J].Sci Signal,2018,11(556):eaat5185.DOI:10.11256/scisignal.aat5185.
[32] SHIRIHAI O S,SONG M,DORN G W.How mitochondrial dyna-mism orchestrates mitophagy[J].Circ Res,2015,116(11):1835-1849.
[33] SUN D,YANG F.Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism[J].Biochem Biophys Res Commun,2017,486(2):329-335.
[34] TSUDA M,FUKUSHIMA A,MATSUMOTO J,et al.Protein acet-ylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure[J].J Cachexia Sarcopenia Muscle,2018,9(5):844-859.
[35] CAHILL T J,LEO V,KELLY M,et al.Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy,resulting in myocardial inflammation and heart failure[J].J Biol Chem,2015,290(43):25907-25919.
[36] YANG Y,TIAN Y,HU S,et al.Extract of sheng-mai-san amel-iorates myocardial ischemia-induced heart failure by modulating Ca2+-calcineurin-mediated Drp1 signaling pathways[J].Int J Mol Sci,2017,18(9):1825.
[37] LUO G,JIAN Z,ZHU Y,et al.Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress[J].Int J Mol Med,2019,43(5):2033-2043.
[38] ZHANG H,LIU B,LI T,et al.AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia[J].Int J Mol Med,2018,41(1):69-76.
[39] LIU L,JIN X,HU C F,et al.Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways[J].Cell Physiol Biochem,2017,43(1):52-68.
[40] WANG J,SONG Y,LI H,et al.Exacerbated cardiac fibrosis indu-ced by β-adrenergic activation in old mice due to decreased AMPK activity[J].Clin Exp Pharmacol Physiol,2016,43(11):1029-1037.
[41] LIU G Z,ZHANG S,LI Y Y,et al.Aldosterone stimulation medi-ates cardiac metabolism remodeling via Sirt1/AMPK signaling in canine model[J].Naunyn Schmiedebergs Arch Pharmacol,2019,392(7):851-863.
[42] MENG Z,JING H,GAN L,et al.Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction:role of AMPK,SIRT1,and mitochondrial function[J].Am J Transl Res,2016,8(6):2641-2649.

相似文献/References:

[1]刘建庄,李金兰,娄清云,等.风湿性心脏病心力衰竭血液流变学改变[J].新乡医学院学报,1992,9(02):108.
[2]苗萍,张喜芳 王延枝.硝酸甘油治疗婴幼儿肺炎心衰疗效观察[J].新乡医学院学报,2000,17(02):129.
[3]任明芬,张三强,张冬红,等.冠心病患者QT间期离散度改变的I临床意义[J].新乡医学院学报,2000,17(03):177.
[4]刘 慧,胡永寸,陈 俭,等.卡维地洛对冠心病心力衰竭患者心室重构和心功能的影响[J].新乡医学院学报,2003,20(01):013.
[5]刘 慧,胡永寸,陈俭。杨庆福.卡维地洛对冠心病心力衰竭患者心室重构和心功能的影响[J].新乡医学院学报,2003,20(01):013.
[6]智佳佳,杜朝政,王 越,等.微RNA和信号通路在骨关节炎病理机制中的作用研究进展[J].新乡医学院学报,2021,38(10):982.[doi:10.7683/xxyxyxb.2021.10.017]
[7]高致炳,韩 冬,张 超.冠状动脉粥样硬化性心脏病并发心力衰竭患者血浆脑利钠肽和高敏C反应蛋白水平变化及临床意义[J].新乡医学院学报,2021,38(9):864.[doi:10.7683/xxyxyxb.2021.09.013]
 GAO Zhibing,HAN Dong,ZHANG Chao.Clinical significance of the changes of plasma brain natriuretic peptide and high-sensitivity C-reactive protein levels in patients with coronary atherosclerotic heart disease complicated with heart failure[J].Journal of Xinxiang Medical University,2021,38(10):864.[doi:10.7683/xxyxyxb.2021.09.013]
[8]韩克丽,赵国安,朱 丽,等.微RNA调节心脏重构的病理生理机制研究进展[J].新乡医学院学报,2021,38(12):1200.[doi:10.7683/xxyxyxb.2021.12.019]
[9]韩旭萌,焦明丽,詹合琴.藤黄酸作用靶点及相关信号通路研究进展[J].新乡医学院学报,2020,37(7):696.[doi:10.7683/xxyxyxb.2020.07.023]
[10]余 俊,刘彤鸥,李晓兰.小分子干扰RNA沉默黏着斑激酶基因对人宫颈癌Hela细胞生物学特征的影响[J].新乡医学院学报,2018,35(4):266.[doi:10.7683/xxyxyxb.2018.04.003]
 YU Jun,LIU Tong-ou,LI Xiao-lan.Effect of focal adhesion kinase gene silence by small interfering RNA on the biological characteristics of human cervical carcinoma Hela cells[J].Journal of Xinxiang Medical University,2018,35(10):266.[doi:10.7683/xxyxyxb.2018.04.003]

更新日期/Last Update: 2019-10-05