[1]孙晓鹏,李辞霞,郭志坤.心肌脂肪酸代谢和心肌脂毒性损伤研究进展[J].新乡医学院学报,2018,35(7):646-650.[doi:10.7683/xxyxyxb.2018.07.025]
 N/A.N/A[J].Journal of Xinxiang Medical University,2018,35(7):646-650.[doi:10.7683/xxyxyxb.2018.07.025]
点击复制

心肌脂肪酸代谢和心肌脂毒性损伤研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
35
期数:
2018年7
页码:
646-650
栏目:
综述
出版日期:
2018-07-05

文章信息/Info

Title:
N/A
作者:
孙晓鹏李辞霞郭志坤
(新乡医学院河南省医用组织再生重点实验室,河南 新乡 453003)
Author(s):
N/A
N/A
关键词:
脂肪酸脂质代谢脂毒性心肌
Keywords:
N/A
分类号:
R362
DOI:
10.7683/xxyxyxb.2018.07.025
文献标志码:
A
摘要:
健康成年人50%~70%的心肌三磷腺苷来自于长链脂肪酸的β氧化,获取的脂肪酸除供线粒体氧化功能外多余的部分以三酰甘油的形式储存于心肌细胞的脂滴中,并在需要时由三酰甘油酯酶水解为脂肪酸和甘油。正常心肌脂肪酸的摄取和氧化维持在一个动态平衡,过多的脂质在心肌内聚集会造成心肌脂毒性,心肌脂毒性可以造成心肌胰岛素抵抗、心肌细胞凋亡和心脏收缩功能障碍,实验和临床数据表明,减少毒性脂质可以改善心肌代谢和功能。目前临床上对心肌的脂毒性损伤尚未引起足够重视。本文查阅近年来国内外文献,就心肌脂肪酸代谢途径和心肌脂毒性、潜在性的脂毒性物质以及与临床的关系进行综述。
Abstract:
N/A

参考文献/References:

[1] KLIP A,SUN Y,CHIU T T,et al.Signal transduction meets vesicle traffic:the software and hardware of GLUT4 translocation[J].Am J Physiol Cell Physiol,2014,306(10):C879-C886.
[2] 武杰,王超,郑鹏飞,等.plin5促进心肌脂肪储积减轻心脏脂毒性损伤[J].心脏杂志,2015,27(5):514-519.
[3] SU X,ABUMRAD N A.Cellular fatty acid uptake:a pathway under construction[J].Trends Endocrinol Metab,2009,20(2):72-77.
[4] SCHWENK R W,LUIKEN J J,BONEN A,et al.Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease[J].Cardiovasc Res,2008,79(2):249-258.
[5] LOPASCHUK G D,USSHER J R,FOLMES C D,et al.Myocardial fatty acid metabolism in health and disease[J].Physiol Rev,2010,90(1):207-258.
[6] GLATZ J F,LUIKEN J J,BONEN A.Membrane fatty acid transporters as regulators of lipid metabolism:implications for metabolic disease[J].Physiol Rev,2010,90(1):367-417.
[7] GREVENGOED T J,KLETT E L,COLEMAN R A.Acyl-CoA metabolism and partitioning[J].Ann Rev Nut,2014,34(1):1-30.
[8] STORCH J,THUMSER A E.Tissue-specific functions in the fatty acid-binding protein family[J].J Biol Chem,2010,285(43):32679-32683.
[9] HE L,KIM T,LONG Q,et al.Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity[J].Circulation,2012,126(14):1705-1716.
[10] LOPASCHUK G D,USSHER J R,FOLMES C D,et al.Myocardial fatty acid metabolism in health and disease[J].Physiol Rev,2010,90(1):207-258.
[11] MADRAZO J A,KELLY D P.The PPAR trio:regulators of myocardial energy metabolism in health and disease[J].J Mol Cell Cardiol,2008,44(14):968-975.
[12] USSHER J R,LOPASCHUK G D.The malonyl CoA axis as a potential target for treating ischaemic heart disease[J].Cardiovasc Res,2008,79(2):259-268.
[13] KOLWICZ S C,OLSON D P,MARNEY L C,et al.Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy[J].Circ Res,2012,111(6):728-738.
[14] ESSOP M F,CAMP H S,CHOI C S,et al.Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice[J].Am J Physiol Heart Circ Physiol,2008,295(2):H256-H265.
[15] SON N H,PARP T S,YAMASHITA H,et al.Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice[J].J Clin Invest,2007,117(10):2791-2801.
[16] SON N H,YU S,TYINEI J,et al.PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation[J].J Clin Invest,2010,120(10):3443-3454.
[17] SAMBANDAM N,MORABITO D,WAGG C,et al.Chronic activation of PPARalpha is detrimental to cardiac recovery after ischemia[J].Am J Physiol,2006,290 (1):H87-H95.
[18] JASWAL J S,USSHER J R,LOPASCHUK G D.Myocardial fatty acid utilization as a determinant of cardiac efficiency and function[J].Clin Lipid,2009,4(3):379-389.
[19] DROSATOS K,SCHULZE P C.Cardiac lipotoxicity:molecular pathways and therapeutic implications[J].Cur Heart Fail Rep,2013,10(2):109-121.
[20] LOPASCHUK G D,FOLMES C D,STANLEY W C.Cardiac energy metabolism in obesity[J].Cir Res,2007,101(4):335-347.
[21] USSHER J R.The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy[J].Exp Rev Cardiovasc Ther,2014,12(3):345-358.
[22] MUOIO D M,NEUFER P D.Lipid-induced mitochondrial stress and insulin action in muscle[J].Cell Meta,2012,15(5):595-605.
[23] ZHANG L,USSHER J R,OKA T,et al.Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation[J].Cardiovasc Res,2011,89(1):148-156.
[24] LIU L,SHI X,BHARADWAJ K G,et al.DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity[J].J Biol Chem,2009,284(52):36312-36323.
[25] LIU L,YU S,KHAN R S,et al.Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARγ transgenic mice[J].J Lipid Res,2012,53(8):1482-1492.
[26] LIU L,SHI X,CHOI C S,et al.Paradoxical coupling of triglyceride synthesis and fatty acid oxidation in skeletal muscle overexpressing DGAT1[J].Diabetes,2009,58(11):2516-2524.
[27] LIU L,TRENT C M,FANG X,et al.Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure[J].J Biol Chem,2014,289(43):29881-29891.
[28] JANERO D R,BURGHARDT B,LOPEZ R.Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists[J].Biochem Pharmacol,1988,37(21):4197-4203.
[29] SENTEX E,SERGIEL J P,LUCIEN A,et al.Trimetazidine increases phospholipid turnover in ventricular myocyte[J].Mol Cell Biochem,1997,175(1/2):153-162.
[30] TAPPIA P S.Phospholipid-mediated signaling systems as novel targets for treatment of heart disease[J].Can J Physiol Pharmacol,2007,85(1):25-41.
[31] LIM H Y,WANG W,WESSELLS R J,et al.Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila[J].Genes Dev,2011,25(2):189-200.
[32] FULLERTON M D,HAKIMUDDIN F,BONEN A,et al.The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice[J].J Biol Chem,2009,284(38):25704-25713.
[33] BASU P,ALIBHAI F J,TSIMAKOURIDZE E V,et al.Male-specific cardiac dysfunction in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient mice[J].Mol Cell Biol,2015,35(15):2641-2657.
[34] PARK J Y,LEE S H,SHIN M J,et al.Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction[J].PLoS One,2015,10(8):e0135228.
[35] GOLDBERG I J,TRENT C M,SCHULZE P C.Lipid metabolism and toxicity in the heart[J].Cell Metab,2012,15(6):805-812.
[36] HAEMMERLE G,LASS A,ZIMMERMANN R,et al.Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase[J].Science,2006,312(5774):734-737.
[37] HAEMMERLE G,MOUSTAFA T,WOELKART G,et al.ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1[J].Nat Med,2011,17(9):1076-1085.
[38] KIENESBERGER P C,PULINILKUNNIL T,SUNG M M,et al.Myocardial ATGL overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction[J].Mol Cell Biol,2012,32(4):740-750.
[39] LIU L,YU S,KHAN R S,et al.DGAT1 deficiency decreases PPAR expression and does not lead to lipotoxicity in cardiac and skeletal muscle[J].J Lipid Res,2011,52(4):732-744.
[40] LAMB H J,SMIT J W,VAN DER MEER R W,et al.Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions[J].Curr Opin Clin Nutr Metab Care,2008,11(5):573-579.
[41] KANKAANP M,LEHTO H R,KOMU M,et al.Myocardial triglyceride content and epicardial fat mass in human obesity:relationship to left ventricular function and serum free fatty acid levels[J].J Clin Endocrinol Metab,2006,91(11):4689-4695.
[42] FAN B,GU J Q,YAN R,et al.High glucose,insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages[J].Metabolism,2013,62(8):1168-1179.
[43] WOLINS N E,QUAYNOR B K,SKINNER J R,et al.OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization[J].Diabetes,2006,55(12):3418-3428.
[44] HALBIRK M,NORRELUND H,MOLLER N,et al.Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function[J].Am J Physiol Heart Circ Physiol,2010,299(4):H1220-H1225.
[45] TUUNANMEN H,ENGBLOM E,NAUM A,et al.Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure[J].Circulation,2006,114(20):2130-2137.
[46] TUUNANEN H,UKKONEN H,KNUUTI J.Myocardial fatty acid metabolism and cardiac performance in heart failure[J].Curr Cardiol Rep,2008,10(2):142-148.
[47] TUUNANMEN H,ENGBLOM E,NAUM A,et al.Trimetazidine,a metabolic modulator,has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy[J].Circulation,2008,118(12):1250-1258.
[48] NOLAN C J,RUDERMAN N B,KAHN S E,et al.Insulin resistance as a physiological defense against metabolic stress:implications for the management of subsets of type 2 diabetes[J].Diabetes,2015,64(3):673-686.

相似文献/References:

[1]乔汉臣.非酒精性脂肪肝病研究进展[J].新乡医学院学报,2006,23(06):630.
[2]杨磊,石如玲,张煜,等.老年大鼠脑脂肪酸含量与脂肪酸β-氧化的关系[J].新乡医学院学报,2011,28(06):000.
[3]杨亚明,赵国安,冯春瑜,等.冠状动脉粥样硬化性心脏病患者的血脂代谢机制及药物治疗研究进展[J].新乡医学院学报,2021,38(10):996.[doi:10.7683/xxyxyxb.2021.10.020]
[4]张李娟,赵舒祥,王若溪,等.淀粉样前体蛋白/早老素1转基因小鼠脑皮质中过氧化物酶体增殖剂激活受体α的表达及意义[J].新乡医学院学报,2022,39(9):801.[doi:10.7683/xxyxyxb.2022.09.001]
 ZHANG Lijuan,ZHAO Shuxiang,WANG Ruoxi,et al.Expression and significance of peroxisome proliferator-activated receptor alpha in cerebral cortex of amyloid precursor protein/presenilin 1 transgenic mice[J].Journal of Xinxiang Medical University,2022,39(7):801.[doi:10.7683/xxyxyxb.2022.09.001]

更新日期/Last Update: 2018-07-05