[1]李婉迪,赵振民.转化生长因子-β/Smads信号通路在病理性瘢痕形成中的作用机制研究进展[J].新乡医学院学报,2017,34(4):335-339.[doi:10.7683/xxyxyxb.2017.04.024]
点击复制

转化生长因子-β/Smads信号通路在病理性瘢痕形成中的作用机制研究进展
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
34
期数:
2017年4
页码:
335-339
栏目:
综述
出版日期:
2017-04-05

文章信息/Info

作者:
李婉迪赵振民
(中国医学科学院北京协和医学院整形外科医院,北京 100144)
关键词:
瘢痕形成病理性瘢痕增生性瘢痕瘢痕疙瘩转化生长因子-β转化生长因子-β/Smads信号通路
分类号:
R318
DOI:
10.7683/xxyxyxb.2017.04.024
文献标志码:
A
摘要:
纤维性修复是人体组织细胞受到损伤时启动的主要修复过程。过量的纤维修复会导致病理性瘢痕的产生,对患者的生理及心理健康造成巨大影响。形成病理性瘢痕的原因有很多,其中免疫因素越来越受到研究者的关注。本文就瘢痕形成及其免疫机制的研究进展作了简单阐述,同时对在其中发挥主要作用的转化生长因子-β及其下游的Smad信号通路展开讨论,在此基础上,并对瘢痕的预防和免疫治疗的研究前景进行了展望。

参考文献/References:

[1] PELLARD S.Epidemiology,aetiology and management of abnormal scarring:a review of the literature[J].J Wound Care,2006,15(1):44-48.
[2] VAN DEN BROEK L J,LIMANDJAJA G C,NIESSEN F B,et al.Human hypertrophic and keloid scar models:principles,limitations and future challenges from a tissue engineering perspective[J].Exp Dermatol,2014,23(6):382-386.
[3] 金石峰,郭澍.病理性瘢痕发病机制的基础研究进展[J].中国美容整形外科杂志,2012,23(7):385-389.
[4] CHEN D,BAO W,WANG Q.Immunological regulations of dendritic cell in abnormal scarring tissue[J].Chin J Plastic Surg Burn,2001,17(5):282-284.
[5] SANTUCCI M,BORGOGNONI L,REALI U M,et al.Keloids and hypertrophic scars of caucasians show distinctive morphologic and immunophenotypic profiles[J].Virchows Arch,2001,438(5):457-463.
[6] BUTZELAAR L,SCHOONEMAN D P,SOYKAN E A,et al.Inhibited early immunologic response is associated with hypertrophic scarring[J].Exp Dermatol,2016,25(10):797-804.
[7] 王锡华,吴军.瘢痕疙瘩和增生性瘢痕病人细胞免疫的测定[J].西北国防医学杂志,2001,22(4):329-330.
[8] BERMAN B,MADERAL A,RAPHAEL B.Keloids and hypertrophic scars:pathophysiology,classification,and treatment[J].Dermatol Surg,2016,43(Suppl 1):1.
[9] 蔡哲,马海欢.人体正常皮肤及瘢痕组织中CD3+表皮内T细胞形态学研究[J].中华整形外科杂志,1999,15(6):431-433.
[10] ZHU Z,DING J,SHANKOWSKY H A,et al.The molecular mechanism of hypertrophic scar[J].J Cell Commun Signal,2013,7(4):239-252.
[11] SLEMP A E,KIRSCHNER R E.Keloids and scars:a review of keloids and scars,their pathogenesis,risk factors,and management[J].Curr Opin Pediatr,2006,18(4):396-402.
[12] WANG J,JIAO H,STEWART T L,et al.Increased TGF-beta-producing CD4+ T lymphocytes in postburn patients and their potential interaction with dermal fibroblasts in hypertrophic scarring[J].Wound Repair Regen,2007,15(4):530-539.
[13] LICHTMAN M K,OTERO-VINAS M,FALANGA V.Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis[J].Wound Repair Regen,2016,24(2):215-222.
[14] PENN J W,GROBBELAAR A O,ROLFE K J.The role of the TGF-beta family in wound healing,burns and scarring:a review[J].Int J Burns Trauma,2012,2(1):18-28.
[15] WANG R,GHAHARY A,SHEN Q,et al.Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells[J].Wound Repair Regen,2000,8(2):128-137.
[16] BOCK O,YU H,ZITRON S,et al.Studies of transforming growth factors beta 1-3 and their receptors I and II in fibroblast of keloids and hypertrophic scars[J].Acta Derm Venereol,2005,85(3):216-220.
[17] BRAN G M,GOESSLER U R,SCHARDT C,et al.Effect of the abrogation of TGF-beta 1 by antisense oligonucleotides on the expression of TGF-beta-isoforms and their receptors I and II in isolated fibroblasts from keloid scars[J].Int J Mol Med,2010,25(6):915-921.
[18] SHAH M,FOREMAN D M,FERGUSON M W.Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring[J].J Cell Sci,1995,108(Pt 3):985-1002.
[19] VALLURU M,STATON C A,REED M W,et al.Transforming growth factor-beta and endoglin signaling orchestrate wound healing[J].Front Physiol,2011,2:89.
[20] LU L,SAULIS A S,LIU W R,et al.The temporal effects of anti-TGF-beta 1,2,and 3 monoclonal antibody on wound healing and hypertrophic scar formation[J].J Am Coll Surg,2005,201(3):391-397.
[21] 张连波,瞿文瑞,秦海燕,等.β转化生长因子/Smads信号通路与创伤愈合的研究进展[J].中华医学美学美容杂志,2014,20(2):154-156.
[22] SCHMID P,ITIN P,CHERRY G,et al.Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar[J].Am J Pathol,1998,152(2):485-493.
[23] YAN X,LIAO H,CHENG M,et al.Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-beta (TGF-beta)/Smad signaling[J].J Biol Chem,2016,291(1):382-392.
[24] YAN X,LIU Z,CHEN Y.Regulation of TGF-beta signaling by Smad7[J].Acta Biochim Biophys Sin (Shanghai),2009,41(4):263-272.
[25] 陈蕾,邸大琳,崔为发.转化生长因子β作用研究进展[J].医学理论与实践,2006,19(4):400-402.
[26] XIE J L,QI S H,PAN S,et al.Expression of Smad protein by normal skin fibroblasts and hypertrophic scar fibroblasts in response to transforming growth factor beta 1[J].Dermatol Surg,2008,34(9):1215-1224.
[27] SUN Q,GUO S,WANG C C,et al.Cross-talk between TGF-beta/Smad pathway and Wnt/beta-catenin pathway in pathological scar formation[J].Int J Clin Exp Pathol,2015,8(6):7631-7639.
[28] 符书昊,叶纹.青光眼滤过术后滤道瘢痕化抑制临床和基础研究进展[J].眼科新进展,2015,35(6):592-596.
[29] 韩治华,杨淑焕,郭卫民,等.TGF-β介导的Smad信号通路在增生型糖尿病视网膜病变中的作用和意义[J].眼科新进展,2016,36(10):957-960.
[30] CHEN J,ZENG B,YAO H,et al.The effect of TLR4/7 on the TGF-beta-induced Smad signal transduction pathway in human keloid[J].Burns,2013,39(3):465-472.
[31] SEGRETO F,MARANGI G F,GIGLIOFIORITO P,et al.HSP90 and TLR4 interplay in keloids[J].Plastic Reconstruct Surg,2016,137(2):480e-481e.
[32] WANG J,HORI K,DING J,et al.Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring[J].J Cell Physiol,2011,226(5):1265-1273.
[33] MEHTA M,BRANFORD O A,ROLFE K J.The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring[J].Burns Trauma,2016,4:15.
[34] ZHAO F,WANG Z,LANG H,et al.Dynamic expression of novel miRNA candidates and miRNA-34 family members in early to mid-gestational fetal keratinocytes contributes to scarless wound healing by targeting the TGF-beta pathway[J]PLoS One,2015,10(5):e0126087.
[35] GRAS C,RATUSZNY D,HADAMITZKY C,et al.MiRNA-145 contributes to hypertrophic scarring of the skin by inducing myofibroblast activity[J].Mol Med,2015,21(1):296-304.
[36] 吕洋,侯慧媛,王雨生.MiRNA在脉络膜新生血管发生发展中的作用研究进展[J].眼科新进展,2015,35(3):283-286.
[37] 孙园园,郭大东,毕宠生.MicroRNA在葡萄膜炎发病过程中的调控作用研究进展[J].眼科新进展,2016,36(11):1082-1085.
[38] 张奇,王琛.MicroRNA-21调控TGF-β通路促进增生性瘢痕形成的机制研究[J].组织工程与重建外科,2014(6):318-323.
[39] 张奇.MiRNA-21调控TGF-β通路促进增生性瘢痕形成的机制研究[C].蚌埠:蚌埠医学院,2014.
[40] 慕生枝,孙要文,王国栋.下调miRNA-21通过PDCD4抑制人增生性瘢痕成纤维细胞增殖并抑制PI3K/Akt信号通路[J].中国美容医学杂志,2015,24(23):39-43.
[41] ZHOU R,ZHANG Q,ZHANG Y,et al.Aberrant miRNA-21 and miRNA-200b expression and its pro-fibrotic potential in hypertrophic scars[J].Exp Cell Res,2015,339(2):360-366.
[42] WANG X,CHU J,WEN C J,et al.Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-beta/Smad signaling in hypertrophic scar fibroblasts[J].Exp Cell Res,2015,332(2):202-211.
[43] WANG X,QIAN Y,JIN R,et al.Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-beta/Smad signaling in human dermal fibroblasts[J].PLoS One,2013,8(2):e55899.
[44] 方小兵,胡晓龙,石继红,等.Smad交互蛋白1在增生性瘢痕组织中的表达及其对纤维化相关因子的影响[J].中华损伤与修复杂志:电子版,2014(2):26-30.DOI:10.3877/cma.j.issn.1673-9450.2014.02.008.

相似文献/References:

[1]徐子琪.病理性瘢痕发病机制及治疗研究进展[J].新乡医学院学报,2022,39(7):688.[doi:10.7683/xxyxyxb.2022.07.018]
 XU Ziqi.Research progress on pathogenesis and treatment of pathological scar[J].Journal of Xinxiang Medical University,2022,39(4):688.[doi:10.7683/xxyxyxb.2022.07.018]

更新日期/Last Update: 2017-04-05