[1]朱瑜,郑志,朱绍辉,等.干酪乳杆菌-山药复合发酵剂对溃疡性结肠炎小鼠肠道菌群的调节及其抗炎作用[J].新乡医学院学报,2023,40(5):401-410.[doi:10.7683/xxyxyxb.2023.05.001]
 ZHU Yu,ZHENG Zhi,ZHU Shaohui,et al.Regulation effect of Lactobacillus casei-yam compound starter on intestinal flora and anti-inflammation in mice with ulcerative colitis[J].Journal of Xinxiang Medical University,2023,40(5):401-410.[doi:10.7683/xxyxyxb.2023.05.001]
点击复制

干酪乳杆菌-山药复合发酵剂对溃疡性结肠炎小鼠肠道菌群的调节及其抗炎作用
分享到:

《新乡医学院学报》[ISSN:1004-7239/CN:41-1186/R]

卷:
40卷
期数:
2023年5
页码:
401-410
栏目:
基础研究
出版日期:
2023-05-05

文章信息/Info

Title:
Regulation effect of Lactobacillus casei-yam compound starter on intestinal flora and anti-inflammation in mice with ulcerative colitis
作者:
朱瑜1郑志123朱绍辉13候栋13陈璇1權英珠4朴丙熙25姜林娟1
(1.新乡医学院公共卫生学院/新乡市医药微生物应用技术重点实验室,河南 新乡 453003;2.韩陵医药研究院有限公司,江苏 南京 211100;3.新乡医学院第一附属医院新乡市肥胖及2型糖尿病诊疗研究与医学转化重点实验室,河南 卫辉 453100;4.梨花女子大学药学院,韩国 首尔 04393;5.莱帕坚公司,韩国 首尔 04393)
Author(s):
ZHU Yu1ZHENG Zhi123ZHU Shaohui13HOU Dong13CHEN Xuan1KWON Youngjoo4PARK Byounghee25JIANG Linjuan1
(1.Xinxiang Key Laboratory of Applied Microbial Technology,School of Public Health,Xinxiang Medical University,Xinxiang 453003;2.Hanling Medical Technology Research Institute Co.,Nanjing 211100;3.Xinxiang Key Laboratory of Medicine,the First Affiliated Hospital of Xinxiang Medical University,Weihui 453100;4.School of Pharmacy,Ewha Woman′s University,Seoul 04393,Republic of Korea;5.Raphagen Company Limited,Seoul 04393,Republic of Korea)
关键词:
益生菌干酪乳杆菌山药溃疡性结肠炎抗炎肠道菌群
Keywords:
probioticsLactobacillus caseiyamulcerative colitisanti-inflammatoryintestinal flora
分类号:
R574.6
DOI:
10.7683/xxyxyxb.2023.05.001
文献标志码:
A
摘要:
目的 探讨干酪乳杆菌-山药复合发酵剂对溃疡性结肠炎(UC)小鼠肠道菌群的调节及其抗炎作用。
方法 将干酪乳杆菌(SJP6841L2)与山药粉末混合发酵,制成干酪乳杆菌-山药复合发酵剂。将60只小鼠随机分为空白对照组、UC模型组、山药对照组、低剂量复合发酵剂组、中剂量复合发酵剂组、高剂量复合发酵剂组,每组10只。UC模型组、山药对照组、低剂量复合发酵剂组、中剂量复合发酵剂组、高剂量复合发酵剂组小鼠给予2,4,6-三硝基苯磺酸诱导,制备UC模型;正常对照组小鼠经肛门注射体积分数50%乙醇。造模成功后,正常对照组、UC模型组小鼠每天经口灌胃生理盐水(10 mL·kg-1),山药对照组小鼠每天经口给予200 mg·kg-1无发酵山药制剂灌胃,低剂量复合发酵剂组、中剂量复合发酵剂组、高剂量复合发酵剂组每天经口分别给予50、100、200 mg·kg-1干酪乳杆菌-山药复合发酵剂灌胃,持续10 d。干预10 d后,观察各组小鼠黏液脓血便、腹泻等一般症状;处死各组小鼠,取结肠,检测结肠的长度、厚度、重量,观察各组小鼠结肠组织水肿情况;应用苏木精-伊红染色观察各组小鼠结肠组织病理学变化,紫外分光光度法检测各组小鼠结肠组织中髓过氧化酶(MPO)活性,酶联免疫吸附法检测各组小鼠结肠组织中白细胞介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)、血红素氧合酶-1(HO-1)和核转录因子-κB(NF-κB)的表达水平,Western blot法检测各组小鼠结肠组织中肠道上调密封蛋白1(claudin 1)和闭锁小带蛋白-1(ZO-1)表达,细菌生理生化鉴定法检测结肠肠道中双歧杆菌、乳酸杆菌、拟杆菌、肠杆菌数量,气相色谱法检测各组小鼠结肠肠道中乙酸、丙酸、丁酸水平。
结果 与单一山药干预比较,干酪乳杆菌-山药复合发酵剂能显著改善UC小鼠结肠组织的长度、厚度、重量(P<0.05),及黏液脓血便、腹泻等肠炎症状,减少UC小鼠结肠隐窝、杯状细胞丢失,抑制炎症细胞浸润,恢复结肠受损的黏膜及组织结构。UC模型组、山药对照组、低剂量复合发酵剂组、中剂量复合发酵剂组小鼠结肠组织中IL-8、TNF-α、NF-κB、HO-1水平及MPO活性显著高于空白对照组和高剂量复合发酵剂组,claudin 1、ZO-1水平显著低于空白对照组和高剂量复合发酵剂组(P<0.05);空白对照组与高剂量复合发酵剂组小鼠结肠组织中IL-8、TNF-α、NF-κB、HO-1、claudin 1、ZO-1水平及MPO活性比较差异无统计学意义(P>0.05);山药对照组和中剂量复合发酵剂组小鼠结肠组织中TNF-α、NF-κB、HO-1水平及MPO活性显著低于UC模型组和低剂量复合发酵剂组,claudin 1、ZO-1水平显著高于UC模型组和低剂量复合发酵剂组(P<0.05);山药对照组与中剂量复合发酵剂组及UC模型组与低剂量复合发酵剂组小鼠结肠组织中IL-8、TNF-α、NF-κB、HO-1、claudin 1、ZO-1水平及MPO活性比较差异无统计学意义(P>0.05)。UC模型组、山药对照组、低剂量复合发酵剂组、中剂量复合发酵剂组小鼠结肠肠道中双歧杆菌、乳酸杆菌数及双歧杆菌/肠杆菌(B/E)值显著低于空白对照组和高剂量复合发酵剂组,拟杆菌、肠杆菌数显著高于空白对照组和高剂量复合发酵剂组(P<0.05);空白对照组与高剂量复合发酵剂组小鼠结肠肠道中双歧杆菌、乳酸杆菌、拟杆菌、肠杆菌数及B/E值比较差异无统计学意义(P>0.05);山药对照组和中剂量复合发酵剂组小鼠结肠肠道中乳酸杆菌数及B/E显著高于UC模型组和低剂量复合发酵剂组,拟杆菌、肠杆菌数显著低于空白对照组和高剂量复合发酵剂组(P<0.05);山药对照组与中剂量复合发酵剂组及UC模型组与低剂量复合发酵剂组小鼠结肠肠道中双歧杆菌、乳酸杆菌、拟杆菌、肠杆菌数及B/E值比较差异均无统计学意义(P>0.05)。UC模型组、山药对照组、低剂量复合发酵剂组和中剂量复合发酵剂组小鼠结肠肠道中乙酸、丙酸、丁酸水平显著低于空白对照组和高剂量复合发酵剂组(P<0.05);空白对照组与高剂量复合发酵剂组小鼠结肠肠道中乙酸、丙酸、丁酸水平比较差异无统计学意义(P>0.05);山药对照组、低剂量复合发酵剂组、中剂量复合发酵剂组小鼠结肠肠道中乙酸水平显著高于UC模型组(P<0.05);山药对照组和中剂量复合发酵剂组小鼠结肠肠道中丙酸水平显著高于UC模型组(P<0.05);中剂量复合发酵剂组小鼠结肠肠道中丁酸显著高于UC模型组(P<0.05);山药对照组和中剂量复合发酵剂组小鼠结肠肠道中乙酸、丙酸水平显著高于低剂量复合发酵剂组(P<0.05);山药对照组与中剂量复合发酵剂组小鼠结肠肠道中乙酸、丙酸水平比较差异无统计学意义(P>0.05);中剂量复合发酵剂组小鼠结肠肠道中丁酸显著高于山药对照组和低剂量复合发酵剂组(P<0.05)。
结论 干酪乳杆菌-山药复合发酵剂能显著抑制UC小鼠结肠组织中IL-8、TNF-α表达及MPO活性,促进结肠组织中紧密连接蛋白的表达及短链脂肪酸的产生,调节肠道菌群平衡;改善UC症状。
Abstract:
Objective To explore the regulation effects of Lactobacillus casei-yam compound starter on intestinal flora and its anti-inflammatory in mice with ulcerative colitis (UC).
Methods Lactobacillus casei (SJP6841L2) and yam powder were mixed and fermented to produce Lactobacillus casei-yam compound starter.A total of 60 mice were randomly divided into blank control group,UC model group,yam control group,low-dose compound starter group,medium-dose compound starter group and high-dose compound starter group,with 10 mice in each group.The mice in the UC model group,yam control group,low-dose compound starter group,medium-dose compound starter group and high-dose compound starter group were induced by 2,4,6-trinitrobenzene sulfonic acid to prepare UC model;the mice in the normal control group were injected with volume fraction 50% ethanol through anus.After successful modeling,the mice in the normal control group and UC model group were administrated normal saline (10 mL·kg-1) by oral gavage every day;the mice in the yam control group were administrated 200 mg·kg-1 non-fermented yam preparation by oral gavage every day;and the mice in the low-dose compound starter group,the medium-dose compound starter group and the high-dose compound starter group were administrated 50,100 and 200 mg·kg-1 Lactobacillus casei-yam compound starter by oral gavage every day,respectively,lasted for 10 days.After treatment for 10 days,the general symptoms including mucopurulent bloody stool and diarrhea of mice in each group were observed;the mice in each group were killed,the colon was taken,and the length,thickness and weight of the colon were measured,the edema of the colon tissue was observed;the pathological changes of the colon tissue of mice in each group was observed by hematoxylin-eosin staining,the activity of MPO in colon tissue of mice in each group was detected by ultraviolet spectrophotometry,and the expressions of IL-8,TNF-α,HO-1 and NF-κB in colon tissue of mice in each group were detected by enzyme-linked immunosorbent assay,the expressions of intestinal up-regulated seal protein 1 (claudin 1) and ZO-1 in colon tissue of mice in each group were detected by Western blot method,the number of bifidobacteria,lactobacilli,bacteroides and enterobacteria in intestinal tract of colon were detected by bacterial physiological and biochemical identification method,the levels of acetic acid,propionic acid and butyric acid in intestinal tract of colon of mice in each group were detected by gas chromatography method.
Results Compared with the intervention of single yam,Lactobacillus casei-yam compound starter could significantly improve the length,thickness and weight of colon in mice with UC(P<0.05),as well as the symptoms of enteritis such as mucopurulent bloody stool and diarrhea;and it could significantly reduce the loss of colonic crypt and goblet cells,inhibit the infiltration of inflammatory cells,restore the damaged mucosa and tissue structure of colon in UC rats.The levels of IL-8,TNF-α,NF-κB,HO-1 and the activity of MPO in colon tissue of mice in the UC model group,yam control group,low-dose compound starter group and medium-dose compound starter group were significantly higher than those in the blank control group and high-dose compound starter group,and the levels of claudin 1 and ZO-1 were significantly lower than those in the blank control group and the high-dose compound starter group (P<0.05);the levels of IL-8,TNF-α,NF-κB,HO-1 and the activity of MPO in colon tissue of mice in the yam control group and medium-dose compound starter group were significantly lower than those in the UC model group and low-dose compound starter group,and the levels of claudin 1 and ZO-1 were significantly higher than those in the UC model group and low-dose compound starter group (P<0.05).The number of bifidobacteria,lactobacilli and bifidobacteria/enterobacteria (B/E) value in intestinal tract of colon of mice in the UC model group,yam control group,low-dose compound starter group and medium-dose compound starter group were significantly lower than those in the blank control group and the high-dose compound starter group,and the number of bacteroides and enterobacteria were significantly higher than those in the blank control group and the high-dose compound starter group(P<0.05);the number of lactobacilli and B/E value in intestinal tract of colon of mice in the yam control group and medium-dose compound starter group were significantly higher than those in the UC model group and low-dose compound starter group,and the number of bacteroides and enterobacteria were significantly lower than those in the blank control group and high-dose composite starter group(P<0.05).The levels of acetic acid,propionic acid and butyric acid in intestinal tract of colon of mice in the UC model group,yam control group,low-dose compound starter group and medium-dose compound starter group were significantly lower than those in the blank control group and high-dose compound starter group (P<0.05);the level of acetic acid in intestinal tract of colon of mice in the yam control group,low-dose compound starter group and medium-dose compound starter group was significantly higher than that in the UC model group (P<0.05);the level of propionic acid in intestinal tract of colon of mice in the yam control group and the medium-dose compound starter group was significantly higher than that in the UC model group (P<0.05);the level of butyric acid in intestinal tract of colon of mice in the medium-dose compound starter group was significantly higher than that in the UC model group (P<0.05);the levels of acetic acid and propionic acid in intestinal tract of colon of mice in the yam control group and medium-dose compound starter group were significantly higher than those in the low-dose compound starter group (P<0.05);the level of butyric acid in intestinal tract of colon of mice in the medium-dose compound starter group was significantly higher than that in the yam control group and the low-dose compound starter group (P<0.05).
Conclusion Lactobacillus casei-yam compound starter can significantly inhibit the expressions of IL-8,TNF-α and MPO activity in intestinal tissues,promote the expression of tight junction protein and production of short-chain fatty acids in colon tissue,regulate the imbalance of intestinal flora,and improve the symptoms of UC mice.

参考文献/References:

[1] 孙晋洁,王丽华,何伯圣,等.炎症性肠病营养护理研究进展[J].实用临床医药杂志,2021,25(8):124-128,132.
SUN J J,WANG L H,HE B S,et al.Research progress of nutrition nursing in patients with inflammatory bowel disease[J].J Clin Med Pract,2021,25(8):124-128,132.
[2] DAI Z F,MA X Y,YANG R L,et al.Intestinal flora alterations in patients with ulcerative colitis and their association with inflammation[J].Exp Ther Med,2021,22(5):1322.
[3] 陶柱萍,龙宇,李灿委,等.肠道菌群在中草药抗溃疡性结肠炎中的作用[J].药学学报,2021,56(2):391-402.
TAO Z P,LONG Y,LI C W,et al.Role of gut microbiota in the treatment of ulcerative colitis with traditional Chinese medicine[J].Acta Pharm Sinica,2021,56(2):391-402.
[4] 张子怡,钟亚东,胡婕伦.山药多糖调控肠道菌群的研究进展[C].//2021中国食品科学技术学会第十八届年会论文集,2022:176-177.
ZHANG Z Y,ZHONG Y D,HU J L.Advances in studies on Chinese yam polysaccharide regulating gut microbiota [C].//Abstracts of the 18th Annual Meeting of China Society of Food Science and technology,2022:176-177.
[5] 姜林娟,郑志,朱绍辉,等.酪酸梭菌-糯米复合发酵液对鼠伤寒沙门菌的抑制作用及其对鼠伤寒沙门菌感染小鼠肠道分泌型免疫球蛋白A的影响[J].新乡医学院学报,2022,39(2):113-121.
JIANG L J,ZHENG Z,ZHU S H,et al.Inhibitory effect of Clostridium butyricum-glutinous rice compound fermentation liquid on Salmonella typhimurium and its effect on secretory immunoglobulin A in intestine of mice infected with Salmonella typhimurium[J].J Xinxiang Med Univ,2022,39(2):113-121.
[6] 姜林娟,朱绍辉,郑志,等.植物乳杆菌-辣椒复合发酵剂对肥胖2型糖尿病小鼠的减肥及降血糖作用[J].郑州大学学报(医学版),2022,57(2):206-211.
JIANG L J,ZHU S H,ZHENG Z,et al.Effect of Lactobacillus Plantarum-capsicum fermentation agent on obesity and hyperglycemia in obese type 2 diabetes mice[J].J Zhengzhou Univ (Med Sci),2022,57(2):206-211.
[7] 郑志,姜林娟,朱绍辉,等.益生菌-海带复合发酵液对肥胖大鼠肠道菌群的影响及抗肥胖效果[J].郑州大学学报(医学版),2022,57(3):308-314.
ZHENG Z,JIANG L J,ZHU S H,et al.Gut microbes and anti-obesity effect of the probiotic and sea-tent fermentation liquid on obese rats[J].J Zhengzhou Univ (Med Sci),2022,57(3):308-314.
[8] 姜林娟,郑志,朱绍辉,等.益生菌植物乳杆菌、鼠李糖乳杆菌、罗伊乳杆菌对医院常见致病病原菌的抑菌作用[J].新乡医学院学报,2022,39(6):501-506.
JIANG L J,ZHENG Z,ZHU S H,et al.Antibacterial effect of Lactobacillus plantarum,Lactobacillus rhamnosus and Lactobacillus reuteri on common pathogenic bacteria in hospital[J].J Xinxiang Med Univ,2022,39(6):501-506.
[9] HILL D,SUGRUE I,TOBIN C,et al.The Lactobacillus casei group:history and health related applications[J].Front Microbiol,2018,19:2107.
[10] 王旭,曹春振,杨志馨,等.干酪乳杆菌HDS-01发酵对酸菜品质和细菌群落结构的影响[J].食品工业科技,2022,43(16):158-166.
WANG X,CAO C Z,YANG Z X,et al.Effect of Lactobacillus casei HDS-01 on the quality index and bacterial community structure of sauerkraut[J].Sci Technol Food Ind,2022,43(16):158-166.
[11] HU L H,LIU J Y,YIN J B.Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats[J].Kaohsiung J Med Sci,2021,37(9):812-818.
[12] 张慧莹,曾丽萍,任运红,等.乳酸芽孢杆菌发酵液护色的山药多糖对葡聚糖硫酸钠诱导的小鼠结肠炎的改善作用及机制[J].食品科学,2022,43(9):120-127.
ZHANG H Y,ZENG L P,REN Y H,et al.Ameliorative effect of polysaccharides from Chinese Yam treated with the fermentation broth of Bacillus sp.to inhibit browning on dextran sulfate sodium-induced colitis in mice[J].Food Sci,2022,43(9):120-127.
[13] ARKALI G,AKSAKAL M,KAYA S .Protective effects of carvacrol against diabetes-induced reproductive damage in male rats:modulation of Nrf2/HO-1 signaling pathway and inhibition of NF-κB-mediated testicular apoptosis and inflammation[J].Andrologia,2021,53(2):e13899.
[14] MOHAMAD NOR M H,AYOB N,MOKHTAR N M,et al.The effect of probiotics (MCP? BCMC? Strains) on hepatic steatosis,small intestinal mucosal immune function,and intestinal barrier in patients with non-alcoholic fatty liver disease[J].Nutrients,2021,13(9):3192.
[15] AN J,HA E M.Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression[J].J Microbiol,2020,58(11):967-977.
[16] WANG Y,LIU J,HUANG Z,et al.Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response[J].Eur J Pharmacol,2021,896:173912.
[17] 郑志,朱瑜,姜林娟,等.益生菌摄入对低纤维饮食小鼠肠道菌群失衡的影响[J].郑州大学学报(医学版),2022,57(5):677-683.
ZHENG Z,ZHU Y,JIANG L J,et al.Effects of probiotics on gut microbial imbalance caused by low-fiber diets in mice[J].J Zhengzhou Univ(Med Sci),2022,57(5):677-683.
[18] EL-SHARKAWY H,TAHOUN A,RIZK A M,et al.Evaluation of Bifidobacteria and Lactobacillus probiotics as alternative therapy for salmonella typhimurium infection in broiler chickens[J].Animals (Basel),2020,10(6):1023.
[19] 梁雁玲,许瑾,聂煜哲.复方嗜酸乳杆菌联合赖氨葡锌颗粒治疗小儿腹泻的作用机制及临床疗效观察[J].当代医学,2021,27(2):1-5.
LIANG Y L,XU J,NIE Y Z.Mechanism of action and clinical efficacy of compound Lactobacillus acidophilus combined with lysine zinc gluconate granules in treating children with diarrhea[J].Contemp Med,2021,27(2):1-5.
[20] 郑志,姜林娟,朱瑜,等.鞣花酸对DSS诱导的溃疡性肠炎小鼠的改善及对COX2/p38/JNK/ERK/IκB-α/NF-κB和iNOS/3-NT/CYP2E1信号通路的作用[J].食品与药品,2022,24(4):295-300.
ZHENG Z,JIANG L J,ZHU Y,et al.Ameliorating effect of ellagic acid on ulcerative colitis in mice induced by DSS and its effect on COX2/p38/JNK/ERK/IκB-α/NF-κB and iNOS/3-NT/CYP2E1 signal pathways[J].Food Drug,2022,24(4):295-300.
[21] ZHENG Z,PARK J K,JIANG L,et al.Beneficial effects of fermentation of red chili pepper using Lactococcus lactis subs.cremoris RPG-HL-0136 in high-fat diet-induced obese mice[J].J Med Food,2023,26(2):81-92.

相似文献/References:

[1]姚彦明. 新型免疫增强剂—乳杆菌[J].新乡医学院学报,1988,5(02):081.
[2]刘 鑫,马中岭,张长存.复方茵陈糖浆联合益生菌与间歇光疗治疗新生儿母乳性黄疸疗效观察[J].新乡医学院学报,2020,37(2):181.[doi:10.7683/xxyxyxb.2020.02.019]
 LIU Xin,MA Zhongling,ZHANG Changcun.Curative effect of compound yinchen syrup combined with probiotics and intermittent phototherapy in the treatment of neonatal breast milk jaundice[J].Journal of Xinxiang Medical University,2020,37(5):181.[doi:10.7683/xxyxyxb.2020.02.019]
[3]姜林娟,郑 志,朱绍辉,等.益生菌植物乳杆菌、鼠李糖乳杆菌、罗伊乳杆菌对医院常见致病病原菌的抑菌作用[J].新乡医学院学报,2022,39(6):501.[doi:10.7683/xxyxyxb.2022.06.001]
 JIANG Linjuan,ZHENG Zhi,ZHU Shaohui,et al.Antibacterial effect of Lactobacillus plantarum,Lactobacillus rhamnosus and Lactobacillus reuteri on common pathogenic bacteria in hospital[J].Journal of Xinxiang Medical University,2022,39(5):501.[doi:10.7683/xxyxyxb.2022.06.001]

更新日期/Last Update: 2023-05-05